by Jeff Bachiochi

Access SD Memory Cards eaty
Solid-State Storage Media in Embedded Apps

Jeff uses SD solid-state storage
media in embedded designs. In
this series of articles, he provides
a thorough introduction to SD
technology. Read on to learn how
he gets real data in and out of the
SD card with the FAT file format.

y first hard drive was 5 MB and took up only a
5" bay. G@nsidering double-sided 5” floppies were 720 KB at
the time, that was pretty darn good. Solid-state memory is
beginning to give mechanical storage a run for its money.
The memory card in my camera holds 1,000 times more
data than that first hard drive. We’re measuring in gigs not
megs today with tererabytes available from some hard
drive manufacturers.

By far the most popular device these days is the solid-
state USB memory device. Used for back-ups and file
exchanges, it’s named after the part of your anatomy it
most closely represents, the thumb. However, the wafer-
thin SD, miniSD, and microSD are some of the physically
smallest devices available (see Figure 1). The microSD is
about as small as I'd want a memory card, or else it would
surely be lost among my pocket lint. When you're design-
iniSD ing a portable device, small is what you’re aiming for. So, it

2GB makes sense to consider SD memory when specifications
call for external memory.

An SD memory card uses 512-byte blocks with a poten-
tial 32-bit (double word) address space, so you can dump a
lot of data to and from one of these little guys. If all of the
reading and writing is handled within your device, you can
take charge of how and where data is stored. However, if
you want to remove the SD card and read the data with
another device, you better adhere to the rules of one of the

v

32 mm

21.5 mm

Figure 1—This shows the relative card sizes available for SD cards. Card adapters allow smaller
sized cards to be read in standard SD card sockets. However, many universal card readers will
accept all sizes without an adapter. (Source: http://en.wikipedia.org/wiki/Secure_Digital_card)

January 2009 — lssue 299

CIRCUIT CELLAR® = www.circuitcellar.com

3



Pins SD Mode SPI Mode
Name | 1/O Type' Description Name 1/0 Type Description
1 CD/DAT3 | I/0 /PP Card detect/data line[Bit3] | CS | Chip select (negative true)
2 CMD PP Command/response DI | Data in
3 Vsss S Ground Vs S Ground
4 Voo S Supply voltage Voo S Supply voltage
5 CLK | Clock SCLK | Clock
6 Voo S Ground Vi S Ground
7 DATO /O /PP Data line[Bit0] DO O/PP Data out
8 DAT1 /O /PP Data line[Bit1] RSV — Reserved*
9 DAT2 /O /PP Data line[Bit2] RSV — Reserved*
[1] S stands for power supply, | stands for input, O means output, I/O means bidirectionally, and "PP" stands for I/O
using push-pull drivers.
[*] These signals should be pulled up by the host side with 10- to 100-k(2 resistance in SPI mode.

Table 1—The SD card interface has a multiple-bit-wide data path. The particulars for using this interface are available
to paying members of the SD Card Association. However, the alternative SPI has been released as a “simplified speci-
fication” to the general public. (Source: Toshiba, www.toshiba.com/taec/components/Datasheet/020725_SD-Mxxx.pdf)

most widely used file format systems.
The FAT file system began with the
efficient FAT12 model, which was
used on floppy disks and was limited
to about 32 MB of addressable space,
and was more than anyone was think-
ing about at the time. The larger
FAT16 model was used on hard drives,
and could handle up to about 2 GB. In
the late 1980s, as hard drive sizes
began approaching 2 GB, the FAT32
model was created, which included
32-bit sector counts, expanding the
range to 2 TB. Although FAT32 has
brought on slightly larger capacities, it
also exhibited out some of its ineffi-
ciencies via pokey behavior with large
sizes. At that point, a rash of uncom-
patible file systems entered the pic-
ture, leaving the FAT as the reigning
champ of compatibility.

SD INTERFACE

My newest laptop and desktop both
have built-in card readers for a number
of different solid-state memory card
formats. Although the maximum
capacities of these devices continues to
increase, the amount of space you need
for your application probably doesn’t
come anywhere near these capacities.
So, in reality, having gigs of space is
most likely overkill for your projects.

Staying compatible with the FAT
file system makes a lot of sense. If you
have been reading my columns each
month, you will remember when I
presented a small two-line LCD serial
terminal (RS-232), which got me out
of a design jam of no longer having

www.circuitcellar.com <« CIRCUIT CELLAR®

serial ports on any of my computers
(“Serial Terminal Solution,” Circuit
Cellar 219, 2008). At the time, I said I

would be using the same schematic
again in a future project. As you may
remember, it had a card reader inter-
face that I ignored for that project. It’s
time to put it to good use.

An SD memory card uses a propri-
etary SPI-type interface. I say SPI-type
interface because communication uses
multiple bidirectional data lines,
instead of a single data line, and a SPI
clock. Commands require a single I/O-
bit command/response structure. How-
ever, there are 4 more bits of data I/O
(see Table 1). The SD card interface
also supports the standard three-wire
SPI. (Needless to say, this will have a
slower throughput.) Without special
hardware interfacing to support the
native (multi-I/O) mode, you will need
to spend a lot of valuable time bit
banging individual bits of your code,

Address 00 02 04 06 08 0A 0C 0E ASCII

0910 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000  OOFE | ... e

0920 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 @ 0000  .cooooo | weverrn

0930 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 @ 0000 ..o | oo

0940 0000 0000 0000 0000 | 0000 | 0000 | 0000 | 0000 | ... | .ccoee

0950 0000 0000 0000 0000 | 0000 | 0000 | 0000 | 0000 | ... | ...

0960 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 @ 0000  .cooooo | weverrn

0970 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 0000 ..o | .ceeeen

0980 0000 0000 0000 0000 | 0000 | 0000 | 0000 | 0000 | ... | ...

0990 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 @ 0000  .cooooo | weverrn

09A0 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 @ 0000 ..o | eeeeern

09B0 0000 0000 0000 0000 | 0000 | 0000 | 0000 0000 | ... | .o

09C0 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 @ 0000  .ooooo | weverrn

09D0 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 0000  ..ooooo | oo

09EO 0000 0000 0000 0000 | 0000 | 0000 | 0000 0000 | ... | .coee

09F0 0000 0000 | 0000 0000 | 0000 | 0000 | 0000 | 0000 | ... | ...

0A00 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 @ 0000  ..ooooo | weveren

0A10 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 0000 ..o | .eeeeen

0A20 0000 0000 0000 0000 | 0000 | 0000 | 0000 0000 | ... | ...

0A30 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 @ 0000  .cooooo | weverrn

0A40 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 @ 0000  ..ooo.o | eeeerrn

0A50 0000 0000 0000 0000 | 0000 | 0000 | 0000 | 0000 | ... | .o

0A60 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 0000  .ooooo | weverrn

0A70 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 0000 ..o | eeeeern

0A80 0000 0000 0000 0000 | 0000 | 0000 | 0000 | 0000 | ... | .ccoe

0A90 0000 0000 0000 0000 | 0000 | 0000 | 0000 0000 | ...... | ...

0AA0 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 0000  ..ooooo | weverrn

0ABO 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 0000 ..o | .ceeeen

0ACO 0000 0000 0000 0000 | 0000 | 0000 | 0000 0000 | ... | ...

0ADO 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 | 0802 | ... | .eeeern

0AEO 0600 | C101 | 85C2 | 0000 | 7BOO | 1D97 | 0000 | 0000 | ........ Lo Ggi

OAFO 0000 0000 0000 0000 | 0000 | 0000 | 0000 | 0000 | ... | .o g

0B00 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 @ 0000  .ooooo | weverrn 2

0B10 0000 0000 | 0000 | 0000 | 0000 | 0000 5500 AFAA | ... | ... U.. c‘}

0B20 0079 | 0000 0000 0000 | 0000 | 0000 | 0000 | 0000 Veroor | e =
Figure 2—This is a dump of a data input buffer after a read of "Block 0" of the SD card. After an FE block count c;
byte, 512 bytes of data are highlighted. Note the first partition entries highlighted at offset 0x1BE. The block ends g
with the marker 0x35 and OxAA. A 16-bit CRC follows the marker. _5




N

N

N

o

Z

7]

]

|

[=p]

=3

=}

N
=

=

<

=

s

<
—_—

so using the three-wire MBR offset = Parameter size = Value found = Description Meaning
SPIis a great alternative. 0x01BE Byte 0x00 0x00 = Inactive 0x80 = Active Volume boot record has no boot code
Standard SPI hardware 0x01BF 3 Bytes 0x000802 Beginning of partition CHS Cylinder/head/sector address = 0x000802
will reduce the servicing 0x01C2 Byte 0x06 0x00 = Unknown Using a 16-bit FAT
of the interface to once a 0x01 = FAT12
byte, as opposed to man- 0x04 = FAT16
aging every bit. 0x05 = Ext MSDOS
Although all of the 0x06 = FAT16
connections necessary 0x0B = FAT32
for bus mode are sup- 0x0C = see 0x0B
ported in this schematic, 0x0E = see 0x06
. . 0xOF = see 0x05
I will be using the three- - .
. 0x01C3 3 Bytes 0xC2C101 End of partition CHS Cylinder/head/sector address = 0xC2C101
wire SPI mode. You can - —
find SD card connectors 0x01C6 Double word 0x00000085 | Sector count from MBR to partition | Partition starts at sector 0x85
0x01CA Double word 0x001D977B | Sector count of partition Partition is 0x001D977B sectors in length

available for all three
sizes of the SD physical
format. I used the stan-
dard SD connector here. When I pur-
chased a microSD card, it came with
an adapter that accepts microSD cards
and enables them to be plugged into a
standard size connector.

If you remember, the microcon-
troller used in this design operates on
3.3 V. This gives you a straightforward
interface to SD cards so you don'’t
have to worry about logic-level trans-
lation. The multi-I/O bus interface
requires a clock output and five bidi-
rectional I/Os. The CMD I/O is used
to receive commands and send
responses. In addition, four DAT lines
are available on the interface, includ-
ing DAT (0:3) for bidirectionally mov-
ing data. Alternate support for the
three-wire SPT uses CMD to receive
commands, data (SDO), DATO for
sending responses, data (SDI), and the
clock line (SCLK).

SD INITIALIZATION

The three-wire mode is not the
native interface bus mode after a reset,
so you must first establish a request for
three-wire SPI mode by holding the
DAT3 line low while issuing a CMDO.
If the SD card recognizes this event, it
will stop bus mode operation and
respond on DATO (instead of the CMD).
Any further communication will use
the three-wire SPI mode (until power
loss). Although the default state of CRC
checking in the SPI mode is disabled,
the initial CMDO command must have
the proper CRC because the default
state in bus mode is CRC enabled.

Commands have a fixed length of
6 bytes. Response lengths are determined

by the command issued. Most responses
are a single byte; however, 2- and 5-byte
responses are also common, depending
on the amount of information being
passed. All responses begin with a
cleared most significant bit (MSB). This
distinguishes itself from a nonresponse
or delayed response. Because an intelli-
gent controller controls the SD card
internally, there will be potential delays
as it exercises the necessary actions
required for each command. Therefore,
data clocked in from the SD card may
contain one or more bytes of data where
the MSB is set. You must continue to
clock in data until a byte is read with
the MSB cleared. Timeouts are there-
fore defined by a maximum number of
extra bytes read without receiving a
legal byte. Also, it must be noted that
because data is clocked out and in at
the same time, at least one extra output
byte must be sent to enable an input
response to be returned (clocked in).

Initialization of the SD card after
power has been applied is required
prior to any data transfers. Besides
sending CMDO (while DAT2 is low,
used as *CS) to initialize the interface
for three-wire SPI, additional com-
mands are required to determine the
type of SD card that has been inserted.
Commands CMDS8, ACMD41, and
CMD?58 help determine minimum
operating voltages and whether the
card has finished its initialization.
Refer to the SD Card Association’s
2006 document titled “SD Specifica-
tions Part 1: Physical Layer Simplified
Specification” for a complete list of
commands.

Table 2—The first logical sector on the card holds the partition information. This tells you how the SD card is formatted, where to look
for (this partition’s) volume boot sector (VBS), and the partition’s size.

Once initialized, you may request
additional information about the card
by using CMD?9 to retrieve the card-
specific data (CSD) and CMD10 to
retrieve the card identification (CID).
The CID includes manufacturer and
product information. The CSD
includes maximum speed and current
requirements, as well as block length
(size in bytes), capacity (number of
blocks), file format to expect, and
other parameters. This information is
enough for you to access the card
using your own format for data (i.e.,
just dumping continuous data to con-
tiguous blocks). To use the FAT file
format, I will investigate how it is
structured by looking at an SD card
that has been preformatted.

I'm a “show me” kind of guy. Read-
ing all about how something works (or
is supposed to work) is fine for a light
overview. But to really know some-
thing, I must work with it. That’s why
I like using an in-circuit debugger. I
can stop program execution at any
point and see what’s going on. I will
use this feature to investigate the
FAT16 file system on my microSD
card. Now that the SD card has suc-
cessfully been initialized, you need to
add only one additional command to
see some data. CMDI17 is a read sin-
gle-block command. It returns up to
the maximum block length (512) bytes
of data after a special response byte of
“FE” used as a block marker and
before a 2-byte (16-bit) CRC (for a
maximum total of 515 bytes). Note
that CMD18, the multiple block read,
automatically decrements this block

CIRCUIT CELLAR® = www.circuitcellar.com



Address | 00 02 04 06 08 0A 0C OE ASCII

0910 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 EBFE | ... | .. L
0920 9000 2020 | 2020 | 2020 | 2020 0200 | 0120 | 0200 .
0930 0200 | 0000 | EDF8 | 3FO0 | 2000 | 8500 | 0000 | 7BOO  ....... ?7
0940 1D97 | 8000 | 2900 | CEB4 | 2F7D  4F4E  4E20 @ 4D41 ) }J/NO NAM
0950 2045 | 2020 | 4620 | 5441 | 3631 | 2020 | 0020 K 0000 | EFAT 16

0960 0000 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 | ..o | .eeeee
0970 0000 | 0000 | 0000 0000 0000 0000 | 0000 0000 | ..... | ...
0980 0000 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 | ..o | eeeere
0990 0000 | 0000 | 0000 0000 0000 0000 | 0000 0000 | ... | ...
09A0 0000 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 | ..o | eeeere
09B0 0000 | 0000 | 0000 0000 0000 0000 | 0000 0000 | ... | ...
09CO 0000 0000 | 0000 | 0000 | 0000 | 0000 | 0000 @ 0000 | ..o | eeeere
09D0 0000 | 0000 | 0000 0000 0000 0000 | 0000 0000 | ..... | ...
09E0 0000 0000 | 0000 | 0000 | 0000 | 0000 | 0000 @ 0000 | ..o | eeeere
09F0 0000 | 0000 | 0000 0000 0000 | 0000 | 0000 0000 | ..... | ...
0A00 0000 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 | ..o | eeeere
0A10 0000 | 0000 | 0000 0000 0000 0000 | 0000 0000 | ..... | ...
0A20 0000 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 | ..o | eeeeee
0A30 0000 | 0000 | 0000 0000 0000 0000 | 0000 0000 | ... | ...
0A40 0000 0000 | 0000 | 0000 | 0000 | 0000 | 0000 @ 0000 | ..o | eeeee
0A50 0000 | 0000 | 0000 0000 0000 0000 | 0000 0000 | ..... | ...
0A60 0000 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 | ..o | .eeee
0A70 0000 | 0000 | 0000 0000 0000 0000 | 0000 0000 | ... | ...
0A80 0000 0000 | 0000 | 0000 | 0000 | 0000 | 0000 @ 0000 | ..o | eeeere
0A90 0000 | 0000 | 0000 0000 0000 0000 | 0000 0000 | ... | ...
0AAO 0000 0000 | 0000 | 0000 | 0000 | 0000 | 0000 @ 0000 | ..o | eeeere
0ABO 0000 | 0000 | 0000 0000 0000 0000 | 0000 0000 | ..... | ...
0ACO 0000 0000 | 0000 | 0000 | 0000 | 0000 | 0000 @ 0000 | ..o | eeeere
0ADO 0000 | 0000 | 0000 0000 0000 0000 | 0000 0000 | ..... | ...
O0AEO 0000 0000 | 0000 | 0000 | 0000 | 0000 | 0000 @ 0000 | ..o | eeeeee
0AFO 0000 | 0000 | 0000 0000 0000 0000 | 0000 0000 | ..... | ...
0B00 0000 0000 | 0000 | 0000 | 0000 | 0000 | 0000 @ 0000 | ..o | eeeere
0B10 0000 | 0000 | 0000 | 0000 0000 0000 | 5500 78AA ... | ... Ux
0B20 00D8 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 | ... | ...

Figure 3—This is a dump of a data input buffer after a read of Block 0x85 of the SD card. After an FE block count
byte, 512 bytes of data are highlighted. Note the VBS entries highlighted at offset 0. The block ends with the mark-

ers 0x35 and 0xAA. A 16-bit CRC follows the marker.

marker, sending another 515 bytes,
until a CMDI12 (stop transmission) is
sent. However, I'll stick with the sin-
gle-block read for now.

DESIGNING WITH FAT

One advantage of using an estab-
lished format for storing files is that
all of the decision making has been
done for you. You can put more of
your effort into the application instead
of how and where the data will be
stored in memory. If you follow the
basic rules, your data will be available
to every computer/device that sup-
ports the file format. You can find in-
depth documents describing the FAT
file format on the 'Net, so I will not
go into every detail here. I will touch

www.circuitcellar.com <« CIRCUIT CELLAR®

only on those areas that apply directly
to this project and those that I believe
are of interest to others attempting to
implement FAT in their own projects.
There are five areas of interest here:
the master boot record (MBR), the
boot sector, the FAT region, the root
directory region, and the data region.
The MBR is the name given to the
first sector of the drive. It may contain
boot code (boot from disk) for the
computer and has four possible partition
entries located at fixed locations with-
in the record. All commands consist of
6 bytes: the command byte, a 4-byte
argument, and a CRC byte. To read
this sector from the SD card, a
CMD17 is issued for LBA sector 0
with a command argument, in this

case, an address of 0x00000000.

The actual data that was trans-
ferred into my 515-byte buffer shows
no boot code after the FE block mark-
er byte at 0x91E (see Figure 2). The
first partition entry is at offset Ox1BE
(0x91F+0x1BE) or location OxADD.
Table 2 shows the meaning of the
values found in this partition entry
beginning at buffer location 0xADD.
This is easy to decipher because you
are dealing with the logical block
address (LBA). You need only to know
that this device is formatted using
FAT16 with the partition beginning
at LBA location 0x85 and spanning
0x1D977B sectors.

The second area of interest is the
volume boot sector (VBS) (see Table 2).
I didn’t explain how to set up the argu-
ment of CMDI17 earlier when I wanted
LBA sector 0 (the MBR) because sector
0 is at address 0. But LBA sector 0x85
is not address 0x85! It’s actually 0x200
(the sector size) times the LBA sector
number. If you remember, a sector
consists of 512 or 0x200 bytes, so LBA
sector 0x85 is really byte address
0x200 (sector size in bytes) times 0x85
(LBA of the sector required) or
0x00010A00. The command argument
is a double word address value of the
first byte of interest.

The dump of LBA 0x85 shows the
first 3 bytes (boot jump vector) as a
near jump to 0000 or no boot code,
right after the FE block marker byte at
0x091E (see Figure 3). I am interested
in the following 64 or so bytes. Refer
to Table 3 to glean the good stuff out
of this sector.

The third area of interest is the FAT
region. Referring to Table 3, a FAT
contains 237 sectors and there are two
of them. This means the FAT region
takes up a total of Ox1DA sectors (237
x 2). The first FAT begins after the
VBS (one reserved sector). That'’s at
LBA 0x86 (the second at 0x173 (0x86 +
0xED)). The next area of interest is the
root directory region. Because the FAT
requires Ox1DA sectors, the root direc-
tory will begin at 0x260:

[ 0x86(first sector of the FAT) +
0x1DA (sector length of the FATS)] [1]

Each sector in the root directory

a January 2009 — lssue 229



& January 2009 — lssue 299

contains 16 directory entries:

|: 512 bytes (sector size) }

32 bytes (directory length) (2]
The root directory uses 32 sectors:
512 (Entries)
16 (Entries/sector) 3]

This enables you to calculate the last area of interest, the
data region. The data region follows the root directory. It
begins at LBA 0x280:

[Ox260 (ﬁrst sector of the Root Directory) +

4
0x20 (Sector length of the Root Directory)] [4]
You don't really need to know this, but I think it helps to
know the boundaries.

You now have a complete map of each area in the FAT
file system (see Table 4). With a bit more background infor-
mation on the FAT and directory structures, you’ll have
enough information to find a directory or file and see
where it’s located in the SD card.

USER INTERFACE

I want to stop discussing the FAT file system here
because the number of figures I need is rapidly exceeding
the number allotted. Instead, I will finish this article with
a discussion about how I use the three push buttons and a
2 x 20 LCD to access the SD card. With a limit of three
push buttons, each of these might require some awkward
list of functions that depend on the mode or screen being
displayed. This would not be user friendly and could end
up as a labeling nightmare.

In sticking with a format I used previously, the LCD will
be used to display a single member of
a list of items. The list might be the

choose either the property mode (to alter the parameters of
the serial port, data rate, number of data bits, parity, num-
ber of stop bits, and flow control) or the operational mode
(to use the SD card interface). The keyscan (or main) loop is
used to monitor key presses and jump to the associated
function routine, one for each button. The main loop is also
responsible for checking the CD input for a card insertion.

If CD indicates that there is no card in the socket, the ini-
tialized flag is cleared and the “display operational menu” is
called before entering the keyscan loop. If CD indicates that
a card is in the socket, a check is made to determine if the
card has already been initialized. If the inserted card has
already gone through initialization, then execution jumps
directly to the keyscan loop. (This is the normal program
flow.) If the SD card has not been initialized, then a card ini-
tialization routine and the display operational menu
routine is called before entering the keyscan loop.

STATE MACHINE

Note that all roads (calls) lead (return) to the keyscan
loop, where any key press steers execution temporarily to a
call where other actions take place based on what mode
(state) the program is in. I've previously described mode 0O
or the “display main menu.” In this mode, a press of but-
ton 1 calls function 1 (mode 0). This will increment the
operational/properties mode choice, and the “display main
menu” is called before returning to the keyscan loop. If but-
ton 2 is pressed, function 2 (mode 0) will decrement the
operational/properties mode choice and the display main
menu routine is called before returning to the keyscan loop.
Pressing button 3 calls function 3 (mode 0). If the choice was
properties, then the mode would be changed to mode 7 and
the display properties menu routine is called before
returning to the keyscan loop. If the choice was operational,

names of all the files and subdirecto- VBS Offset = Parameter size | Value found = Description Meaning
ries in the present directory or a list of gxgg :Eﬁes EEED ‘g’énw’: ’i\Tstruction glo b:ot code
. . X es ¢ ? ame an
{lilr?eczlli(:;ja;os iﬁgi:giﬁé 1"}111: sféfzsc:n d 0x0B Word 0x0200 Bytes/sector Sector = 512 bytes
line labels the button functions. This 0x0D Byte 0x20 Sectors/cluster Cluster = 32 sectors
" 0x00 Word 0x0001 Reserved sector count One sector

usually takes the form of “1-Next 2- 0x10 Byte 002 FAT Count Two FAT copies
Prev 3-OK. . . 0x11 Word 0x0200 Maximum root directory entries | 512 Root directory entries

A mer:hermcal switch on the SD card 0x13 Word 0x0000 Total sector count 0 (Use offset 0x20)
socket indicates when a device has 0x15 Byte 0xF8 Media descriptor Hard disk
been inserted by removing the ground 0x16 Word 0X00ED FAT Sector count FAT Length = 237 sectors
from the input and allowing card 0x18 Word 0X003F Sectors/track Track = 64 sectors
detect (CD) to rise (thanks to a pull-up 0x1A Word 0x0020 Head count Heads = 32
resistor). When the circuit is powered | ox1¢ Doubleword | 0x00000085 | Hidden sectors VBS = 0x85
on and the microcontroller initializes, | ox20 Doubleword  0x001D977B | Sector count Sectors = 1939323
a call is made to the display main 0x24 Byte 0x80 Physical drive Drive = 128
menu routine before returning to the 0x25 Byte 0x00 Reserved
keyscan loop. (Note that this is the 0x26 Byte 0x29 Extended boot signature
basic process of this application: dis- 0x27 Double word 0x2F7DCEB4 | Serial number 796774068
play something and then give the user 0x2B 11 Bytes “NO NAME" | Volume label
a chance to respond.) The display 0x36 8 Bytes “FAT16" FAT Type

main menu will give you a chance to
scroll through the main menu list and

Table 3—LBA 0x85 holds information for the VBS. You can calculate the beginning LBA for each FAT and the root

directory.

CIRCUIT CELLAR®

= www.circuitcellar.com



2

N

2

)
=
173
v
—
|
[=2]
o
=]
x
=3
=
I
=
5
<
e,

then the mode is changed to mode

Once the Root directory is read,

8 and the display operational

you can interpret the directory

menu is called before returning to

entries. Any directory or file name

the keyscan loop.

you come across is added to the

I'll skip over the following list of

directory buffer. This buffer holds

modes because they were covered

a list of all of the names found in

in Issue 219 and deal only with set-

LBA Length Area
0x00 One sector Master boot record
0x85 One sector Volume boot sector
0x86-0x172 OXED Sectors First FAT region
0x173-0x25F OXED Sectors Second FAT region
0x260-0x27F 0x20 Sectors Root directory region
0x280-0x1D9800 | 0x1D9580 Sectors | Data region

the root directory region (files or

ting the properties of the serial port
(“Serial Terminal Solution,” Cir-

cuit Cellar, 2008). Mode 7 (display
properties menu) consists of a list of
five choices: data rate, data bits/parity,
stop bits, flow control, and exit. Mode 1
(display data rate menu) has eight
choices: 300, 1,200, 2,400, 9,600,
19,200, 38,400, 250,000, and exit. Mode
2 (display bits menu) has five choices:
8N, 9N, 80, 8E, and exit. Mode 3 (dis-
play stop menu) consists of a list of
three picks: 1, 2, and exit. Mode 4 (dis-
play flow menu) enables you to choose
from three items: None, Hardware, and
exit.

New to this project are Mode 5 (display
file menu), Mode 6 (display directory
menu), and Mode 8 (display operational
menu). I'll wrap up this column by

Table 4—The MBR and VBS give you the information required to
create a complete LBA sector map of the entire FAT file system

discussing Mode 6, which was men-
tioned earlier when I discussed the
CD input and SD card detection.
Except for the initialization process
of the SD card (when the media is
accessed to determine if it can be sup-
ported), should there be a problem
Mode 6 handles much of the SD card
access and displays a directory from
the card or an error message. As you
saw earlier, the data on the SD card is
held in 512-byte sectors or blocks.
Reading the first sector (MBR) clues
you into which block holds the VBS.
In the VBS, you find out about the
makeup of the SD card and where the
FAT and Root directory regions lie.

subdirectories).
Completion of the directory

search leads to a call to the dis-
play buffer routine. This routine dis-
plays the first subdirectory or file name
in the buffer and returns to the
keyscan loop (enabling you to scroll up
and down through the buffer’s list of
entries and eventually choose one).
This is the only time that the list does
not wrap around. I thought that wrap-
ping around this list could get confus-
ing, especially if the list is long, so all
directory lists scroll but do not wrap
around.

Should any of the SPI communication
commands have problems reading or
interpreting the data from the SD card,
a “bad media” flag is raised leading to
an LCD message suggesting that the

=

DM2A-SFW-PEJ-S

Fo]
o
Ri5 J_ 4
5 —=10
s L o | vee 3av
Ut R1 ¢R2 {Rs (R4 CR3 (Re
100k 100k > 100k 100k 100k > 100k
L—{ voLr vDD2 g
RAO vssz | 2F
—2 Rat RB15 [
RBO RB14 2=
RB1 RBI3 [22
RB2 RB12 [
£ res RBI1 [
2 vsst RB10 (21
A2 VDDCORE |53
RAB DISVAEG |==—
— RB4 Feo (5 cs
RA4 RBS [T 10u
VDD1 RB7 2
14 Res RE6 L
|( PIC24F J64GA002 =
cof/ 0du c8[f 0.4u =
voosav -
e T Ty sl
C ci+ 3 % o
° s | T Lo
e 0.1u 0.1u J2
2———|_ L3 ct c2- J5 :
L i TiouT 1
g T2 T20UT (=
2 riouT RAIN —ls L
R2OUT R2IN
vee 33v —&ypp GND

MAX232

o
EENE

06646

VCC 3.3V
R7 R8 Rg
100k p 100k p 100k
1

DBO
DB1
DB2 F—
DB3

LCD1

G
LP2950 0.1y

—H

Figure 4—The Microchip Technology PIC24FJ64GA002 microcontroller used here is operated on 3.3V, eliminating any unnecessary logic-level translation with the SD card
interface. The 2 x 20 character LCD runs on 5 V, but the microcontroller can handle that interface without a hitch, thanks to 5-V-level-tolerant /0.

CIRCUIT CELLAR® = www.circuitcellar.com



media be replaced. Should the media be
removed at any time, the “media ready”
flag is cleared, leading to an LCD mes-
sage asking for media to be inserted.

BREAK

You're now on the brink of choosing
a file or subdirectory from the SD card.
There is far more to discuss than I
have room for here. You need to inves-
tigate the directory structure and see
how to determine what’s there, learn
what the FAT is used for, and figure
out how to locate a file’s data. There is
so much more to come, yet you've
come so far already. You learned about
the physical interface used in access-
ing an SD card, commands that it rec-
ognizes, and how to use these com-
mands to investigate the media.

Refer to Figure 4 if you want to
begin playing around with this circuit.
Next month, I will put the code for
this project on the Circuit Cellar FTP
site when I finish examining the
actions needed to get real data out of
and into the SD card using the FAT
file format. &)

APEC. 2009

AVED

Washington, DC

February 13-21,

SPONSORED BY

www.circuitcellar.com <« CIRCUIT CELLAR®

Jeff Bachiochi (pronounced BAH-key-AH-key) has been writing for Circuit Cellar since
1988. His background includes product design and manufacturing. You can reach him at
Jeff.bachiochi@imaginethatnow.com or www.imaginethatnow.com.

R ESOURCES

MR Eraociation

Microsoft Corp., “Microsoft Extensible Firmware Initiative: FAT32 File
System Specification; FAT: General Overview of On-Disk Format,” Version
1.03, 2000, www.microsoft.com/whdc/system/platform/firmware/fatgen.
mspx.

SanDisk Corp., “SanDisk Secure Digital Card Product Manual,” Version 1.9,
80-13-00169, 2003, www.cs.ucr.edu/~amitra/sdcard/ProdManualSDCardv1.9.
pdf.

SD Card Association, “SD Specifications Part 1: Physical Layer Simplified
Specification,” Version 2.00, 2006, www.sdcard.org/developers/tech/sdcard/
pls/Simplified_Physical_Layer_Spec.pdf.

Toshiba America, Inc., “SD - Mxxx Series SD Memory Card,” 2002,
www.toshiba.com/taec/components/Datasheet/020725_SD-Mxxx.pdf.

S OURCE

PIC24FJ64GA002 Microcontroller
Microchip Technology, Inc. | www.microchip.com

THE PREMIER
GLOBAL EVENT
IN POWER
ELECTRONICS

Visit I.Ell.,' 1'!.}1- 2004
web site for the latest

information!

www.apec-conf.org

e

PO MR

N

N

N

o

=

@

”

—

|

=]

=3

=3

N
=

=

<

=

=

<
—_—



{ROM THE BENCH by Jeff Bachiochi

Access SD Memory Cards ¢ty
Use the FAT File Format to Move Data

Jeff concludes his introduction to
SD technology with information
about using the FAT file format to
move data. He also describes
how to create directories and file
entries, and delete, save, and
append data using ring buffers.

hether it is audio, video, graphic, database,
system, executable, or any number of other file types, they
can all be stored, moved, and copied from one storage
medium to another, thanks to the operating system’s abili-
ty to understand how each medium handles the data.
While we can’t necessarily execute an OS-specific file
across multi-OS platforms, many platforms support multi-
ple file systems. So, we can at least exchange data via sev-
eral supported types of media.

When floppies took over from tapes as the
storage medium of choice, DOS introduced
us to the FAT file system. At the time,
clever designers used shortcuts (space-saving
data packing) to cram the most data onto
the available media. This inherently put
maximum physical limits on what the sys-
tem could handle. With file sizes measured
in kilobytes, this limit was of no concern

at the time. Today’s needs show how this
may have been a bit shor tsighted.

Improvements to the original FAT file sys-

tem have met those needs for now. Can

we expect this to remain adequate? It
services its intended need well; and while
we should never say never, I believe it
will continue to be supported for many

Photo 1—Like everything else, even removable solid-state memory
devices have undergone a shrinking process. SD cards are great for
adding file storage to your project.

<2}
N
N
)
=
@
)
—_—
|
=
=3
=3
N
=
=
<
=
—
[5)
—=

www.circuitcellar.com - CIRCUIT CELLAR®




2]
N
N
@
=
2
—
|
=2
=3
=]
N
=
g
=
-
[
==

Address HEX ASCII BIOS parameter block with definitions of var-
0910 | 1309 | OOFF | FFFF | FFOO | 0000 | 0000 | 210B | FE53 | ... | .. L.S | ious media parameters including where to
0920 4420 | 4D49 | 4352 | 4F20 | 2020 | 0800 | 0000 | 0000 | DMICRO | ... find the other regions. The FAT region is a list
0930 ] 9...F | of tags indicating the status of each cluster or
ILE T T.... group of sectors. The root directory region
9.@X. 9.--F | contains a list of files or directory names and
0960 494C | 4532 | 2020 | 2054 | 5854 | 2000 | 0000 | 0000 | ILE2 T XT ... corresponding information. The file and (sub)
"""" 0 directory region hold the actual file data or
""" additional subdirectories.
"""" . With the interfacing and protocols intro-
09A0 4546 | 4620 | 2020 | 204A | 5047 | 2018 | 3D50 | 5819 | EFF J | PG .=PX. .
9.9.%0Y B duced last month, I had room to describe
Suns. ot only the first of four sections of the F AT file
we 1 system. This month, I will begin by digging
09EQ | 4800 | 6100 | 6C00 | 6600 | 2000 |OFO0 | 0244  O06F | H.alf ..Do | into the root directory region using the
me. a t n| FATI6 format. From the reserved region, I
ALFDO~1J PG ..gX. previously determined a number of impor-
99.YF 6.Y(.| tantparameters. For your reference, there are
0A20 | 3938 | 3136 3838 | 5F20 | 2020 | 1000 @ AF1B  181A  981688_ | .. 512 entries in a directory. There are 237
0A30 391A | 3900 | 001C | 181A | 39AE | 0000 | 4000 | 00 99..... 9.@... sectors in each of two FATSs. The first FAT
0A40 0000 0000 | 0000 | 0000 | 0000 | 0000 0000 ' 0000 | ... .. begins in sector 0x86. There are 512 bytes
0A50 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 00O | ... | ... per sector. There are 32 sectors per cluster,
0A60 0000 0000 K 0000 | 0000 | 0000 | 0000 0000 K 0000 | ... ... and there are 32 bytes per directory entry.
0A70 0000 0000 | 0000 | 0000 | 0000 | 0000 0000 000O | ... . Because I know that the FAT begins at sec-
0A80 0000 0000 0000 | 0000 0000 | 0000 | 0000 @ 0000 | ... | oo tor 0x86 and each of the two F ATs are 237
0A9 0000 | 0000 " 0000 | 0000 ' 0000 ' 0000 | 0000 0000 " .. | ... (0xED) sectors each, the root directory must
OAAO 1000010000+ 0000110000 10000 1000010000 0000 ...... | ... be at 0x86 + OxED + OxED or sector 0x260.
0ABO  RUGOORISOC0ORSO00URSRO000RRO000RNUOU0RRRO0000RIRO000RY ...~ | ... I'll start by looking at this sector or the logi-
OACO  [0000 [0000 | 000G" | 0000 | 0000 | 0000) | 0000 | 0000 ... | ... cal block address (LBA).
0ADO | 0000 ' 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | ... | .
e ==|  ROOT DIRECTORY, FAT REGIONS
en GG ECRL AL R . A dump of LBA 260 (the first root directo-
0810 0000 | 0000 0000 | 0000 0000 | 0000 | 0000 | 008D ... ry sector in Figure 1) shows nine entries: a

Figure 1—This 512-byte sector dump of the first sector of the root directory shows a few 32-byte directory
entries. The first entry (beginning at address 0x091F) is reserved for the optional volume name, in this case
“SD MICRO.” The remaining entries consist of two text files, a subdirectory, and two digital image files. Note
that these data dumps are depictions of the memory, as displayed by the ICD2 debugger, address data is in.

years because it is so ingrained into today’s media.

Last month, I started discussing how you can use SD
solid-state storage media in your embedded designs.
Although the intended nibble interface is open to those
who join the SD Association, a simplified version of the
physical layer specification is available at www .sdcard.com.
This interface is a standard SPI. While the throughput might
be slower (1 bit versus 4 bits), it works well with a micro-
controller’s standard SPI hardware. Although I consider the
USB thumb drive to be the most popular file transfer media,
most cameras, phones, PDAs, MP3 players, and other
portable electronics use a smaller form of solid-state storage.
The SD card is widely used and available. This makes it a
perfect match for embedded products (see Photo 1).

If you haven’t read the first article in this series, please take
a few minutes to review the points I covered last month
(“Access SD Memory Cards (Part 1): Solid-State Storage Media
in Embedded Apps,” Circuit Cellar 222, 2009). The FAT file
system is divided into four sections: the reserved region, the
FAT region, the root directory region, and the file and directory
data region. The reserved section contains the boot sector or

volume ID, four files, two directories (one
deleted), and two entries associated with a
long file name. All of the directory entries,
whether they are file or directory entries,
take on the same format. When they are ini-
tially formatted, all directory entries contain 0x00s. A 0x00
as the first byte of directory entries indicates that the entry is
empty and there are no more used entries in the rest of the
directory. (This fact saves search time.) A file name (or direc-
tory name) must consist (for the most par t) of one or more
alphanumeric characters. Although long file names can
exceed eight characters, I will not discuss them here. (Y ou
can read about how they are handled in most over views of
the FAT file system.) The directory structure begins with an
eight-character name and a three-character extension. A file
name has an implied “.” between its name and extension.
This is determined by the twelfth byte in the director y entry.
The attribute byte contains flag bits indicating, among other
things, if the entry is a file or a directory. Other bytes contain
various time and date information. Besides the name and
attribute parameters, the last two are significant. The cluster
value tells you where to look for the first sector of the file or
subdirectory and the FAT location associated with the entry.
The file length indicates the file size in bytes. (Directories
always have a zero file length as can empty files.)

The first sector (of either copy) of a F AT region holds 256

CIRCUIT CELLAR® = www.circuitcellar.com



16-bit pointers for the cluster numbers
0x00 to OxFF (with the following sec-
tors holding additional pointers for the
remaining clusters). The 16-bit value
stored at each cluster position begins
life as zero. (Except for cluster 0 and
cluster 1, these are reserved and can
not be used.) A value of zero means
the cluster is not in use. When a direc-
tory entry is created, its cluster low
word value (at offset Ox1a in the direc-
tory entry) points to the first cluster
used by the entry. In Figure 1, cluster
2 was assigned to directory entry
FILE.TXT, a text file of 4 bytes. This
refers to the cluster where the data o f
the file begins and the FAT location
where more information is held. When
the entry is a directory or a file that is
less than 16,384 bytes, it does not require
more than a single cluster (32 sectors)
(see Table 1). Therefore, the 16-bit FAT
entry for cluster 0x0002 contains a value
that indicates that this is the last cluster
in the file with a value of (0OxFFF8-
OxFFFF). Otherwise, the 16-bit FAT entry
for cluster 0x0002 would contain the
value of the next cluster used by the
file. Unless a cluster is the last, each
FAT entry would then point to an addi-
tional cluster, and so on.

In the dump of the first sector of the
FAT, you can see how this works (see
Figure 2). The sector data begins after the
block byte at address 0x90E. The first
few words are OxFFF8s and OxFFFFs. The
third word is for cluster 0x0002. The
OxFFFF indicates that this is the last
cluster. I added a large file (HALF-
DO~1.JPG) so you can see how the
chaining works. In the root directory,
this file was assigned cluster 0x000C
(12%). The twelfth word in the FAT entry
is not OxFFFF, but 0x000D. This file’s
data does not end in cluster 0x000C but
continues on into cluster 0x000D. Now
look at the thirteenth FAT word and you
will see it doesn’t end there but each one
points to another cluster up to cluster
0x00AD. This FAT entry is OxFFFF, indi -
cating that this is the last cluster of the
file. Back in the last 4 bytes of this file’s
entry in the root directory sector, you
can see that the file’s size for this file is
0x00285915 (2,644,245 bytes) and
requires many clusters.

Additional clusters were allocated
sequentially for this file, but they don’t

www.circuitcellar.com < CIRCUIT CELLAR®

Address HEX

ASCII

0910 00FF

0920
0930
0940
0950
0960
0970
0980
0990
09A0
09B0
09C0
09D0
09E0
09F0
0A00
0A10
0A20
0A30
0A40
0A50
0AGO
0A70
0A80

0000 | 0000 | 0000 | 0000 | 0000

0000 | 0000

0000 | 0000 | 0000

0A90 0000 | 0000 | 0000 | 0000 | 0000

0000 | 0000 | 0000

0AAO 0000 | 0000 | 0000 | 0000 | 0000

0000 | 0000 | 0000

0ABO 0000 | 0000 | 0000 | 0000 | 0000

0000 | 0000 | 0000

0ACO 0000 | 0000 | 0000 | 0000 | 0000

0000 | 0000 | 0000

0ADO 0000 | 0000 | 0000 | 0000 | 0000

0000 | 0000 | 0000

0AEO 0000 | 0000 | 0000 | 0000 | 0000

0000 | 0000 | 0000

0AFO 0000 | 0000 | 0000 | 0000 | 0000

0000 | 0000 | 0000

0B00 0000 | 0000 | 0000 | 0000 | 0000

0000 | 0000 | 0000

0B10 0000 | 0000 | 0000 | 0000 | 0000

0000 | 0000 | OOOE

Figure 2—This is the first sector of the first FAT. This sector holds all of the 16-bit (for FAT16) FAT entries for clus-
ter 0x00-0xFF (successive sectors hold successive cluster entries). Note that the cluster entry in a directory entry
(for a subdirectory or file) points to the cluster where the entries actual data resides and also to an entry in the
FAT. Any FAT entry with a value greater than OxFFEF signifies this is the last cluster used by the subdirectory or file.
Other values greater than 1 (0 and 1 are reserved) point to the next cluster used by the subdirectory or file.

have to be. The chaining process can
jump to any unused cluster. This is a
good time to mention what happens
when something is deleted. If a single
byte—the first character of a directory
entry—is changed to OxE5, the file (or
subdirectory) is considered unavailable.
Note that all of the infor mation includ-
ing the actual data has not been altered
in any way. This makes every deleted
file potentially recoverable, unless it is
damaged by data that has been subse-
quently written to the disk. Thus,
remember that deleting a file does not
delete the information. Apply a full
format to totally wipe the media, not
just a quick erase.

PROJECT OBJECTIVES

I could have wimped out and just

added the necessary functions to do log-
ging to and dumping from a file already
on the SD card. But, I wanted to make
this project as helpful as possible. T added
functions that help show how things are
done but certainly aren’t necessary for
this project. The 2 x 20 LCD and three-
button interface really made this a chal-
lenge. Assuming your formatted SD card
has no files on it, you would need to be
able to create an entry in the root direc-
tory region. This project gives you three
choices: create a file, create a (sub) direc-
tory, or exit without doing anything. I
use the top line of the LCD to give you a
choice and the second line to indicate
the function of the buttons. Usually, this
is button 1, display the next item, but-
ton 2, display the previous item, and
button 3, choose the item. Let’s create

<2}
N
N
)
=
@
)
—_—
|
=
=3
=3
N
g
=
—
[5)
=



en
N
N
Q
=
n
7
]
|
=p}
=
=
N
=
-
S
=
-2
o
—

g

Directory Parameter | Value found | Description Meaning can be used. You must go back to the parent directory
entry offset | size and add the directory name (and pertinent data) to an
0x00 11 Bytes ‘FILE1 TXT"  Name ‘FILET .TXT" | empty directory entry. This completes the chain that
0x0B Byte 0x20 Attributes Archived file can point us to the new director y’s cluster.
Bit 0 = Read only
Bitl = Hidden NEW COMMANDS
B!tz = System Adding a file to a directory is actually easier than
B!t3 ) V9Iume b adding a directory. But there are a few differences.
g':: i il\lr(;c.tory The file name includes a three-character extension.
o = Archive This is indicated on the LCD by a “.” separating the
Bits0:3 = Long name . . .
eight-character name from the extension. The FAT is
0x0C Byte 0x00 Reserved . . . .
P handled the same way. (At this point, the file size is
0x0D Byte 0x00 Creation time (tenths) B he file size i hi 4
OXOE Word 0x0000 Creation fime 1zjeroi) egause the ile 51}216 is zer(i, nothing needs to
Bits0:4 = Seconds/2 e placed anywhere in the new c ‘ustey An en.lpty
Bits5:10 = Minutes directory entry needs to be filled in with the file
Bits11:15 = Hours name and pertinent data.
0x10 Word 0x0000 Creation date Assuming a new directory and file have been created
Bits0:4 = Day (exist) in the root directory cluster, a number of new
Bits5:8 = Month commands become available. The appropriate com-
Bits9:15 = Year + 1980 mands are offered when a directory or a file name is cho-
0x12 Word 0x391C Date of last access 8/28/2008 sen. When a directory is selected, you can change to the
0x14 Word 0x0000 Reserved new directory, delete the directory, add a new directo-
0x16 Word 0x5840 Time of last write 11:02:00 AM ry, add a new file, or return to the present directory.
0x18 Word 0x3919 Date of last write 8/25/2008 When a file is selected, you can delete the file, add a file,
0x1A Word 0x0002 Cluster low word Cluster = 2 dump a file, log to a file, add a new directory, or return
0x1C Double word | 0x00000004 | File size (bytes) File size = 4 to the present directory.

Table 1—Each directory entry can hold useful information about a file or directory.

a (sub) directory in the root directory region (see Figure 3).

Entering a directory name is the first challenge. I can take
advantage of a previously required routine to move 20 charac-
ters from the RAM into row 1 of the LCD. The blinking cursor
never shows up on the LCD because the LCD print statement
leaves it beyond the last visible character position. By moving
the cursor to character position 1-20, it can be used as a
prompt to you. Buttons 1 and 2 cycle forward and backward
through legal characters (including a blank space and backspace
arrow for correcting mistakes). Button 3 advances the cursor to
the next position (or backspaces). The entry routine exits
after eight characters are entered.

All of this entry is worthless if we don’t have any open clus-
ters, so we’d better check the FAT region. I use three basic rou-
tines with the FAT: locate a FAT entry (cluster), read the cluster
entry, and write the cluster entry. I want to find an unused FAT
entry (read 0x0000) and claim it for the new directory (write
OxFFFF). The offset into the FAT where the unused entry is
found becomes the cluster number for the new directory. Note
that directories require a single cluster and therefore will not
require chaining in the FAT. A second copy of the FAT is
kept for safety measures. While this isn’t normally used, it’s
a good idea to keep it updated for compatibility.

Now the new cluster becomes the home for the new sec-
ond-level directory. You must add two directory entries to
this clean slate, the “dot” and “dot dot” director y entries.
The “.” directory uses the new cluster number as its clus-
ter pointer. The “..” directory uses the parent cluster as its
cluster pointer.

One last operation is necessary before this new directory

Execution spends most of its time in the opera-

tional mode. This is where all the file and director y
names in the present directory are displayed (one at a
time). When an SD card is inser ted, this will always be the
root directory (in this case, that’s LBA 0x0260). If a directo-
ry name is selected (e.g., ONE) and you choose to switch
directories, the entry’s first cluster pointer (0x0004) is used
as the cluster to be
used as the present
directory. (Refer to
Figure 1 and you
will see that directo-
ry ONE uses cluster
0x0004.) Figure 4 l
shows a dump of this

Creative directory

| Input directory name |

Find an unused entry in the first FAT
and mark it as the last cluster

I

Mark the same cluster in the second FAT

I

Get the first sector in the new cluster
and create two directory entries.

The “dot” directory’s cluster
entry points to the present cluster.

The “dot dot” directory’s cluster
entry points to its parent cluster.

Figure 3—This flowchart
greatly simplifies the process
for creating a directory.

When searching the FAT, for
instance, you may need to l

search every word in every
sector of every cluster (up to
the maximum 237 sectors
per FAT) for an entry just to
find out that there is no room
left. Obviously, the search
loops are exercised more as
the media fills up.

Go back to the parent directory and
fill in an empty directory entry with the
new directory’s information.

CIRCUIT CELLAR®

= www.circuitcellar.com



directory’s first sector, LBA = 0x0003 (Cluster-1) Address HEX

x 0x20 (sectors per cluster) + 0x0260 (root direc- 0910 00FF | FFFF | FFOO | 0000 | 0000 | 210B | FE2E

tory) or 0x02CO0. You can see the “dot,” “dot | 0920  [2020 2020 2020 2020 2020 1000 0000 QOCO K | ..

dot,” and (sub) directory TWO entries in the | 0930 0000 0000 ' 0000 | 0000 0004 0000 0000 | 002E | ... | ..

ONE (sub) directory. Note the first cluster word 0940 2E20 | 2020 | 2020 | 2020 | 2020 | 1000 | 0000 | 0000

locations (at offset Ox1A of each directory entry 0950 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0054 | ..oo. | ... T

pointing to the respective clusters of those enti- 0960  [OMMESIZ020NI20s0N2020NR2020NIOU0RRO00OREO000R WO | ...

ties). By changing the first character 0x54 of 0970 00 | o |

directory TWO to 0xOES, this entry would be 0980 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | e | e

eliminated. When using this application to delete 0990 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | ... | ...

a directory, no check is made as to which files or 09A0 LT R, o |
. . . . 09B0 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | oo | oo

subdirectories might be deleted as a result of this

action. Many operating systems won't allowa [ o0 Z80 L 00 T O O T R e

directory to be deleted unless it is completely 09E0 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 ... .

empty!

On thefile side,choosing FLELTXT inthe oot | oy oo aaop om0 com 0 000 o0 com . | ..
directory gives us the opportunity to dump this file 0A10 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | .. |
(see Figure 1). The first cluster position (offset 0A20 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | ... | ...
0x1A)in the FILEL.TXT directory entry (0x0002) 0A30 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | .. | .
points to where this file’s data is stored. From the 0A40 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | oo |
File_Size position (0x1C) in the FILE1.TXT directo- 0A50 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | . | oo
ry entry, this file’s length is 0x00000004. The first 0A60 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | ..o | oo
sector dump of cluster 0x0002 LBA 0x0280 shows 0A70 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | oo | oo
the first four characters of this file to be “Test” (see 0A80 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | oo | oo
Figure 5). This circuit’s serial port is used as the 0A90 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | .o | oo
output device for the dump operation. The file 0AAD 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | .o | oo
length determines how many characters will be 0ABO 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | ... |
sent. The characters are collected from every LBA 0ACO 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | ... | e
(every sector of every cluster in the file’s chain) 0ADO | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | ... | .
until the appropriate number of characters have OAEO | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | .o | oo
been transmitted. This is easy for FILEL.TXT OAFO | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | ... | ...
because it has only four charac ters. However, the 0B0O 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | .. | .
HALEDO-1JPG file has multiple clusters. To 0B10 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | O0EE | e | e

dump this file, we begin with the first sector of
cluster 0x000C, LBA 0x03C0 (0x000B x 0x20 +
0x0260), and send all 512 bytes. The LBA is incre-
mented and all bytes of each sector are sent until
the whole cluster (0x20 sectors) has been sent
(0x100 bytes x 0x20 sectors = 0x2000 or 8,192 bytes). The FAT
entry at word offset 0x000C is then interrogated to find out
which cluster holds the next portion of data. An entire cluster’s
worth of data is sent (another 8,192 bytes.) The whole FAT
thing is repeated until 2,644,245 bytes have been transmitted.

RING AROUND THE ROSIE

The last function, and the main reason for this project, is
the logging of data from the serial por t. If you have been fol-
lowing the processes up to this point, you should have a good
understanding of how this is accomplished. The serial por t
has been implemented with output and input ring buffers.
Each ring buffer has a head and a tail pointer . When the
buffers are empty, the head pointer equals the tail pointer.
Each pointer can point to any address of the buffer from its
lowest address to its highest address (the buffer ’s length). The
pointers are usually incremented and must be repositioned to
the beginning of the buffer if they exceed the buffer ’s
length—thus the term ring, or circular buffer. Once the ring
buffers are implemented, you no longer have to deal with the

www.circuitcellar.com <« CIRCUIT CELLAR®

Figure 4— The root directory’s subdirectory entry (ONE) points to cluster 0x00004, LBA 0x2C0. This
dump shows how it is similar to the root directory but has two required entries, the “dot” entry point-
ing to its own cluster, and the “dot dot” entry pointing to a directory (one level up), in this case the
root directory. This subdirectory also holds a new subdirectory (TWO).

serial port hardware directly, just the loading of the output

buffer and unloading of the input buffer.

From the serial port side, any characters received cause
an RX interrupt. The interrupt routine handles taking the
received character and putting it into the input ring buffer .
The routine may add only characters to the ring buffer via
the buffer’s head pointer. Received characters are placed at
the head pointer (and the head pointer is incremented) only
if there is room in the buffer. There is room until the head
pointer + 1 equals the tail pointer. At this point, adding a
character (and incrementing the head pointer) makes the
head and tail pointers equal. This was previously defined as
an empty buffer, so this would produce a buffer overrun
condition and the buffer’s data would be lost. One of two
things must happen at this point, either the serial por t must
use flow control to stop the data from coming in or the
data must be tossed out. This should not occur if the appli-
cation can remove the data from the ring buffer and store it
in the SD media faster than the data can be received.

On the serial output side, the output ring buffer will be

<2}
N
N
)

=

@

2]
—_—

|

=2
=3
=3
N
=

=

<

=
—
[5)
—=



en
N
N
Q

=

n

7
]

|

=p}
=
=
N
=

-

S

=
-2
]
—

how to use SD memory

in a project, there is

plenty more that can be

discussed. The

Microchip Technology

PIC24FJ64GA002 has

other useful hardware

that you can explore. I
purposely left time and

date stamping out of

my directory entry rou-

tines (other than mak-

ing sure the entries

were legal). This micro-

controller has a hard-

ware real-time clock

that you can use to

implement accurate

time and date entries.

You will also find a pro-

grammable-length CRC

generator, which would

make using CRCs a lot

easier. I'll leave these

and other enhancements

for to you to experiment

with. If you would like

me to devote additional

space to any of this,

drop me an e-mail.

You'll find C routines

emptied via the output Address HEX ASCII

ring buffer’s tail point- 0910 | 1309 | 00FF | FFFF | FFO0 | 0000 | 0000 | 2108 | FES&Y ... | .. LT
er. Unless the output 0920|6578 7400 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | est.. | ...
ring buffer’s tail point 0930 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 ... | ...
equals the head point- 0940 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 .. | ...
er, there is a character 0950 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 ... | ...
available for transmis- 0960 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 ... | ..
sion. The TX interrupt | 0970 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | ... | .o
routine is responsible 0980 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 ... | ...
for keeping the output 0990 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 ... | ..
rine buffer empt 09A0 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 ... | ...
%Vhen the f(ljui"char_ 0980 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 ... | ...
ters of FILEL TXT 09CO | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 ... | ...
ac er‘zo e oh 09D0 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | .. | ...
were dumped, the char- 09E0 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 0000 | ... | ..
acters were placed into 09F0 | 0000 | 0000 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | ... | ...
the output ring buffer 0AOD | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | ... | ...
using the buffer’s head OA10 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 .. | ...
pointer. Because moving | gA20 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 ... | ..
characters from the sec- | 0A30 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 ... | ..
tor buffer to the output 0A40 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 ... | ...
ring buffer will be fast, 0A50 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | .o | ...
the application may 0AB0 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | ... | ...
stall waiting for the TX | 0A70 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | ... | ..
interrupt routine to 0A80 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 .. | ...
empty the output ring 0A90 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 ... | ...
buffer. So the dump 0AAO | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 ... | ..
time will be directly 0ABO | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 ... | ...
related to the data rate. | OACO | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | oo ...
When logging data, 0ADO | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 ... | ..
assuming the data rate OAEO | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 ... | ..
4 L : OAFO | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 ... | ...

is sufficiently high com-
) 0BOO | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 ... | ...

pared to the data input
0B10 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 0000 | 000E ... | .

implementing the FAT

rate, any bottleneck
will come from the SD
cards inability to write
a block of data fast
enough and get back for
more without allowing the ring buffer
to wrap. I thought I'd try logging a
0.5-MB file at a data rate of 19,200 bps
for a test. I expected approxi mately
2,000 characters per second. I saw a sec-
tor write (lasting 35 ms) every 250 ms.
That’s four sectors, or 2,048 (i.e., 512 x
4) bytes per second. I pulled the SD
card out and put it in my PC to check
the file. It was the proper length at
567,408 bytes and viewed correctly.
So, while I was in Windows Explorer, I
used it to create an empty text file to
try another test at a higher data rate.

I put the SD card back into my project
board and repeated the test. I saw a sec-
tor write (lasting 35 ms) every 125 ms.
Looking good! However, when I ended
this logging session, the directory was
trashed. (It viewed as if it had lots of
garbage entries.) Hmm. It must have

Figure 5—The minimum chunk that can be allocated to a file (or subdirectory) is one cluster. A
cluster has 32 sectors associated with it. This file (FILEL.TXT) of only 4 bytes and any file, will
have at least 32 sectors reserved for it.

run into timing issues. But wait, that
would have caused a loss of data and not
affected the directory. Hmm. The short
story is the directory entry created using
Windows Explorer didn’t assign a FAT
entry (so the FAT entry was zero)
because an empty file has 0 bytes. When
I began logging, I looked at the directo-
ry entry’s FAT and assumed it had been
assigned. (After all, that’s what Idoin
this application.) Because a FAT entry
of zero is used by the root directory,
logging to it causes the root directory’s
sector to be overwritten, causing cata-
strophic results. With this incorrect
assumption corrected, logging at
38,400 bps worked as expected.

SO MUCH MORE

While this project succeeds in per-
forming the tasks required to explain

file system offered by
many manufacturers.
However, you won’t
learn much about it by
just calling someone
else’s code. I like to seize every oppor-
tunity to expand my knowledge base.
Time constraints don’t always allow
this process, but I hope I've sparked
your curiosity. Every so often, you
should try to take this less traveled
path. &l

Jeff Bachiochi (pronounced BAH-key-AH-key)
has been writing for Circuit Cellar since
1988. His background includes product
design and manufacturing. You can reach
him at jeff.bachiochi@imaginethatnow.com
or at www.imaginethatnow.com.

S OURCE

PIC24FJ64GA002 Microcontroller
Microchip Technology, Inc.
www.microchip.com

CIRCUIT CELLAR® = www.circuitcellar.com



Creativity Tor 1TOMOrTow’s better Iivifit..

HandsOn Tech provides a multimedia and interactive platform for
everyone interested in electronics. From beginner to diehard, from
student to lecturer... Information, education, inspiration and
entertainment. Analog and digital; practical and theoretical; software
and hardware...

HandsOn Technology support Open Source
Hardware(OSHW) Development Platform.

oEen source
ardware

Learn : Design : Share

www.handsontec.com

O
+
&

7

)
<
<

=

W,

.“
- X
y pr 2 3
/ o
i

—

e (|

www.handsontec.com www.handsontec.com





