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hances are
you’ve used an

ARM-based device
within the last week and

quite possibly the last hour. ARM
CPUs have been in PDAs since the
days of Newton. Currently, ARM is the
only supported processor architecture
for the latest version of Microsoft’s
PocketPC. And as I write this article,
it’s apparent that ARM chips will soon
be appearing in PalmOS devices, hav-
ing displaced the venerable 68K. 

Most mobile phones use ARM cores
either in ASICs or standard CPUs.
They may be controlling your hard
disk, printer, or network switch.
ARMs were one of the root causes for
the transfer of the semiconductor divi-
sion of the last generation’s giant to
this generation’s giant. ARM processors
range from small, embedded microcon-
trollers all the way up to those intend-
ed for the multimedia market.

It’s clear that many industry leaders
have voted with their orders in favor of
ARM. There are reasonable options for
hobbyists and smaller players, too.
Many ARM chips are still available
with wires instead of balls (it’s hard to
believe that 1.0-mm pitch packages are
now the convenient option). Numerous
reasonably priced ARM evaluation

boards are available on the market. For
those of you who want to write soft-
ware for higher-end embedded ARM
processors but don’t have an evaluation
board, removing PocketPC from an
iPAQ is a reasonably priced option.
Compaq sponsored a successful open-
source project based on the idea that
embedded Linux is targeted for iPAQs.

ARM, Ltd. is an IP vendor that’s
licensing the architecture, processor
cores, and system cores. In addition,
ARM has its own development tools,
including an instruction set simulator
and JTAG in-circuit emulator.

TERMINOLOGY AND NOMENCLATURE
Discussing ARM products presents

you with many “secret handshake”
opportunities. In the ARM world, there
is a differentiation between the instruc-
tion set architecture, the basic core, and
the core including all of the embedded
macrocells. The terminology for these
items is similar enough to easily trip up
the product sales representatives. So,
knowing the secret handshake will
show you which FAEs are really knowl-
edgeable enough to help you. 

When someone talks about the ARM
architecture version, they’re talking
about the instruction set. Most ARM
chips in embedded devices and current
designs are based on either the ARM
v4 or v4T architecture; however, the
most advanced ARM chips from both
ARM and Intel are based on the v5T
architecture, which is a superset of
the v4T architecture.  

The “T” in the architecture’s name
means that the architecture in the chip
supports the 16-bit Thumb instruction
mode, which we’ll discuss later. There
is also an “E” variant of the v5 architec-
ture for DSP extensions. You can imple-
ment one architecture in multiple core
families. If you’re just using an ARM
processor in your design or an ARM
core in your ASIC, then you will only
care about the architecture version
when you’re poring through instruction
set manuals. Companies like the for-
mer Digital Semiconductor and Intel
are concerned with the architecture as
they implement their own core that is
compliant with a given architecture.

Discussions of architecture versions
will cause many engineers’ eyeballs to
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provide a way to perform atomic reads
or writes of up to 15 32-bit words.
These advantages were enough for the
ARM designers to include the instruc-
tions and lose a level of RISC purity.

PROCESSOR MODES
An ARM processor has seven poten-

tial operating modes, including a stan-
dard user mode and six privileged
modes that are used to handle inter-
rupts, exceptions, or system tasks.
The privileged modes are: System,
Supervisor, Interrupt, Fast Interrupt,
Abort, and Undefined Instruction. All
of the privileged modes, with the
exception of System mode, have their
own stack pointer, link register, and
current status register. The System
mode uses User mode register set.

The Supervisor, Interrupt, Fast
Interrupt, Abort, and Undefined
Instruction modes are entered through
hardware or software exceptions.
Exceptions with their own mode and
registers minimize exception-handling
latency and reduce the problems of
nested exceptions. You only need to
save registers that you’re going to use
in your exception handler without con-
cern about the stack pointer, link regis-
ter, and SPSR. You must save these reg-
isters if you’re going to re-enable the
exception in your exception handler.

REGISTERS
The ARM architecture defines

37 registers. Of the 37 registers, 31 are

glaze over as they try to use an ARM
chip in a design. When the discussions
move to the core that’s used in the
chip, the glazed-look should disappear.

The core family is the actual imple-
mentation of the architecture. The
common core families from ARM are:
ARM7 Thumb, ARM9 Thumb, ARM9E
Thumb, and ARM10 Thumb. There are
also ARM core families from Intel: the
StrongARM (originally from Digital
Semi) and XScale Microarchitecture.  

The core that you use determines
the maximum performance you’ll get
from the CPU. Different cores within
the same architecture version may have
different pipeline and data path struc-
tures. In addition, with the exception of
the few cores that can be synthesized,
ARM licenses the physical core. The
feature sizes and voltages available
were determined by ARM when the
core was initially implemented.  

Having all of the SoCs with the same
ARM core and roughly the same core
CPU performance is beneficial for those
of us who consume the chips. The chip
manufacturers compete with each other
on peripheral sets in the microcon-
troller rather than with benchmark
numbers that are only meaningful to
the marketing department.

Most of the ARM chips on the mar-
ket use a CPU core that’s the combi-
nation of the basic core and embedded
macrocells that provide debug (D),
64-bit multiplication results (M), DSP
extensions (E), and in-circuit emulation
(I). The most common system cores are
the ARM7TDMI and ARM9TDMI
(recall that the “T” stands for Thumb
instruction mode).  

You can combine a CPU core with
memory system units to create a sys-
tem core. These system cores are
licensed by ARM and identified by a
name that uses an extended core num-
ber. For example, the ARM720T core
contains separate instruction and data
caches, write buffers, and a memory
management unit. With a better memo-
ry hierarchy, it’s no surprise that CPUs
with system cores tend to perform bet-
ter than ones with only a CPU core.

FEATURES 
With a few exceptions, the code for

ARM processors is written in a higher-

level language. Like all RISC machines,
the architecture is well suited to high-
er-level languages like C. So, why
should we discuss the architecture and
instruction set?  

First, when writing or porting code to
a new embedded platform, you’ll need
assembly to do the initial start-up code,
to set up some of the on-chip periph-
erals, and to take advantage of archi-
tectural features like fast interrupts.
Second, many of you are bit pushers
who may appreciate some of the fea-
tures in the ARM instruction set. 

That being said, I will limit the dis-
cussion of the architecture and instruc-
tion set to a quick overview, as well as
to those things that differentiate the
ARM from its competitors, in an effort
to reduce the risk of losing those of you
still reading this article. Note that
you’ll need to refer to ARM’s The ARM
Architecture Reference Manual for the
actual instruction documentation. 

Obviously, ARM processors are RISC
machines. The only interactions with
memory are to load or store registers.
Arithmetic, logic, and control instruc-
tions operate only on registers. To
accommodate this, a large general-pur-
pose register set is available. Unlike
other RISC processors, the ARM
instruction set has instructions that
take longer than one execution cycle.
The instructions to load or store multi-
ple registers may deviate from theoreti-
cal RISC design, but it does reduce code
space, improve data throughput, and

Register APCS name Use Saving convention

r0 a1 Arg 1/integer result/scratch Caller
r1 a2 Arg 2/scratch Caller
r2 a3 Arg 3/scratch Caller
r3 a4 Arg 4/scratch Caller
r4 v1 Register variable 1 Callee
r5 v2 Register variable 2 Callee
r6 v3 Register variable 3 Callee
r7 v4 Register variable 4 Callee
r8 v5 Register variable 5 Callee
r9 sb/v6 Static base/register variable 6 No change/callee
r10 sl/v6 Stack limit/register variable 7 No change/callee
r11 fp Frame pointer
r12 ip Scratch/new sb in interlink-unit calls
r13 sp Stack pointer
r14 lr Link register/scratch
r15 pc Program counter

Table 1—The ARM procedure calling standard (APCS) defines how registers should be used. This standard is fol-
lowed by ARM higher-language compilers. Assembly language routines that interface with higher-level languages
must at least follow the convention for the caller or callee saving of the registers.
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Register r15 is the program counter,
and it must be treated differently than
the other 15 general-purpose registers.
Care must be exercised when writing
to the program counter, because this
will cause the processor to execute a
branch to the new address. To return
from a function call, you must move
the return address into the program
counter. The simplest way to do this
is to execute the mov pc, lr com-
mand, which will do a register-register
transfer of the return address in the
link register into the program counter.  

If the link register was saved on the
stack as it entered into the function,
then the load multiple register com-
mand can be used. For example, if
you’re saving registers r4 through r6
on the stack along with the link regis-
ter using the stmfd sp!, {r4-r6,
lr} command, then executing:

ldmfd sp!, {r4-r6,pc} 

will restore registers r4 through r6
and cause a branch back to the
return address.  

ARM has defined the convention for
the usage of the registers in the ARM
procedure call standard (APCS). [1]
This convention sets the ground rules
for compiler writers and those of you

general-purpose registers and six are sta-
tus registers. Each program status regis-
ter (PSR) contains the current proces-
sor mode, interrupt and fast interrupt
enable flags, a Thumb mode flag, and
conditional flags. The flags—nega-
tive, zero, carry, and overflow—are
used for the conditional execution of
ARM instructions. 

One of the PSRs, the current pro-
gram status register (CPSR), is used for
the current state of the processor. The
five exception processor modes each
have their own saved program status
register, or SPSR. These are referred to
as SPSR_mode. 

When the processor is in a mode
other than User mode, the SPSR con-
tains the CPSR from when the proces-
sor left the previous mode. You need
to use the SPSR in some exception
handlers, especially if you are using a
Thumb-enabled processor. 

The ARM architecture includes
31 32-bit-wide, general-purpose regis-
ters. At any time, only 15 general-
purpose registers, the program count-
er, and CPSR are visible. The first
eight registers, r0 to r7, are referred to
as unbanked registers. Registers r8
through r14 are referred to as banked
registers, because different registers
may be visible under the same name
in different processor modes.  

All of the exception modes use a
banked r13 and r14 for the mode stack
pointer and link register. Only the FIQ
mode banks registers r8 through r12.
The banked registers for a given mode
are designated rN_mode. When in a
given mode, you’ll see the registers for
that mode without using the “_mode”
designation. The internals of the
processor use the _mode registers for
processor mode swapping.

writing assembly code that will inter-
face with higher-level languages. 

Because the ARM instruction set is
meant to be used with higher-level
languages, all of the ARM assembly
language routines should at least fol-
low the convention for which registers
need to be saved by the callee rou-
tine. The register usage in APCS is
shown in Table 1.

The first four arguments in a func-
tion call are placed in registers a1 to
a4. APCS allows these registers to
change inside the called function. The
function caller should assume these
values are returned in an unpre-
dictable state. If the registers need to
be preserved, they should be pushed
onto the stack prior to the function
call. A single-word return value comes
back from the function in register a1.   

The registers reserved for register
variables, v1–v5/v7, must not change
during a function call. The called
function must save these values prior
to use and restore them prior to
return. Because C compiler writers
follow this standard, this lets you
know the maximum number of opti-
mized variables in any section of code.

EXCEPTIONS
There are seven types of exceptions

for ARM processors: reset, interrupt,
fast interrupt, software interrupt, data
abort, prefetch abort, and undefined
instruction. When an exception condi-
tion occurs, the ARM hardware vec-
tors to a specific address for that
exception. The vector addresses are
listed in Table 2.

Because there is only one machine
word available for all exceptions apart
from fast interrupts, the instruction at
the vector address should be a jump to
the actual exception handler. The

Exception Processor mode Vector address

Reset Supervisor 0x00000000
Undefined instruction Undefined 0x00000004
Software interrupt Supervisor 0x00000008
Prefetch abort Abort 0x0000000C
Data abort Abort 0x00000010
Interrupt IRQ 0x00000018
Fast interrupt FIQ 0x0000001C

Table 2—When one of the seven ARM exceptions occurs, the processor switches into one of the privileged modes
and vectors to a well-known address. With the exception of the fast interrupts, the vector address for another
exception follows in the next word. For all non-FIQ exception handlers, the instruction in the vector address must
be a jump to the actual exception handler.

Exception Priority Banked registers Link register Return example

Reset 1 Undefined Undefined Undefined
Data abort 2 r13, r14, CPSR Aborted instruction + 8 subs pc, r14, #8
Fast interrupt 3 r8–r14, CPSR Next instruction + 4 subs pc, r14, #4
Normal interrupt 4 r13, r14, CPSR Next instruction + 4 subs pc, r14, #4
Prefetch abort 5 r13, r14, CPSR Aborted instruction + 8 subs pc, r14, #8
Undefined 6 r13, r14, CPSR Next instruction movs pc, r14
Software interrupt 6 r13, r14, CPSR Next instruction movs pc, r14

Table 3—Take a look at the exception priorities, banked registers, and return mechanism for the seven ARM excep-
tions. The priority is used if there are multiple exceptions pending at the completion of an instruction. The undefined
exception and software interrupt are the same priority because they are mutually exclusive.
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exception to this is the fast interrupt.
As the highest exception vector, there
is no need for a jump, and there are
no restrictions on the FIQ handler
starting at address 0x0000001C.

When an exception occurs, the reg-
isters that will be banked for the new
mode are transferred to the appropri-
ate _mode register. Then, the CPSR is
copied into the exception mode’s
SPSR, normal interrupts are disabled,
and the program counter is set to the
exception vector.  

If the exception is a reset or fast
interrupt, FIQ is also disabled.
Otherwise, the FIQ disable bit in the
CPSR is not modified. The instruction
pointed to by the banked link register
is determined by the exception type.
The link register for reset is undefined
because it doesn’t make any sense to
return from a processor reset. The link
registers stored for each exception are
listed in Table 3. To return from the
exceptions, special forms of the mov or
sub commands with an “�“ suffix are
required to notify the processor that
the saved registers must be restored.
This is also shown in Table 3. 

You can use a store multiple and
load multiple combination with a cou-
ple of modifications from what is done
to return from a function. First, you
must perform the appropriate subtrac-
tion on the link register prior to issuing
the Store Multiple command. Second,
you must add a ^ suffix to notify the
processor that a mode change must
occur. Listing 1 shows an example.

There are two separate interrupt
mechanisms: normal interrupts and
the fast interrupt. There can be multi-
ple sources of IRQs, but only one
source for the FIQ. As you can tell by

the name, fast interrupts are meant to
occur with a minimum of interrupt
handling time. The ARM architecture
helps this in three ways. First, the limi-
tation on only one source of the FIQ
exception removes the need for soft-
ware vectoring. Second, there is no
need for an additional jump, because
the FIQ handler is at the highest excep-
tion vector address. Third, the proces-
sor will bank registers r8–r14 on an FIQ
exception (see Table 3). This may pro-
vide enough working registers so that
stack operations are not necessary.  

Normal IRQs can be caused by on-
chip peripherals or interrupt requests
external to the chip. Each implementa-
tion can handle multiplexing differ-
ently. Some implementations require
external hardware for interrupt multi-
plexing, while others provide internal
registers for this purpose. In general,
software vectoring is required for IRQs.
Even here there are potential differ-
ences between implementations. The
AT91 ARM7TDMI family implements
hardware IRQ vectoring through the
Advanced Interrupt Controller, which
is an on-chip peripheral.

The two abort exceptions are initiat-
ed by the memory system when an
instruction fetch, data load, or store is
requested from an invalid address.
These will normally occur in systems
with a memory management unit or
memory protection unit. The excep-
tion handler will generally resolve the
abort condition and then replay the
instruction that caused the abort. In a
system with an MMU, especially a vir-
tual memory system, the abort excep-
tion handlers will be used to appropri-
ately set up the MMU registers. The
breakpoint (BKPT) instruction in v5T

Listing 1—When entering an exception handler, you must push the registers that you will use onto the
stack. When you use the store multiple register instruction for your working registers, the final register
pushed on the stack should be the link register. This allows you to use one instruction to restore your work-
ing registers and to perform a return. This listing shows you how to store r0–r6 for an IRQ handler.  
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architecture is another way to gener-
ate a prefetch abort exception.

The software interrupt (SWI) is used
to provide User mode access to func-
tions that are only accessible to privi-
leged modes. The execution of the
swi <argument> command causes
the software interrupt exception. The
system will enter Supervisor mode to
service the request. The exception
handler uses the argument, which is
encoded in the instruction, to determine
the system function that’s being
requested. This argument is 24 bits if
the SWI instruction was executed in
ARM mode; it’s only 8 bits in Thumb
mode. 

If you’re implementing a system that
will use Thumb instructions or that’s
set up for Thumb Interworking, you
should consider limiting the number of
system commands to 255. The excep-
tion handler will need to extract the
argument from the instruction prior to
the one pointed to by the link register. 

The undefined instruction exception
occurs when an undefined opcode is
executed or a coprocessor doesn’t
accept a coprocessor command. This
exception can be used to expand the
ARM instruction set. It can be used,
for instance, in a system without a
coprocessor. The undefined instruction
exception handler would be used to
emulate coprocessor instructions. 

To implement an undefined instruc-
tion handler, you have to decode the
instruction prior to the one pointed to
by the link register. Both the unde-
fined instruction and software inter-
rupt handlers require knowledge of
instruction machine code encoding.  

The timing of the exception han-
dling depends on the individual
exceptions. When the reset input to
the processor is asserted, the proces-
sor immediately enters the reset state,
interrupting the current instruction.
The other one that’s probably of most
interest to you is the timing of FIQ
and IRQ exceptions. The state of the
interrupt inputs is checked at instruc-
tion boundaries. Individual instruc-
tions are not interrupted. This
means that load multiple, store mul-
tiple, and coprocessor transfer instruc-
tions can delay the processor recogni-
tion of an interrupt.  

Robert Martin received a Ph.D. in
Physics from The College of William
and Mary. He’s been working with
embedded and real-time systems for
over 10 years. Currently, Robert is an
engineering manager directing a team
of embedded software engineers near
Phoenix, Arizona. You may reach him at
rmartin@sonoranfoothillseng.com.
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For load multiple and store multiple
instructions, this is up to the time
required to read or write memory with
16 words or 512 bytes. The coprocessor
designer determines the maximum
number of bytes transferred by
coprocessor transfer instructions. For
this reason, ARM recommends that
coprocessor designer not transfer more
than 512 bytes in a single instruction.

WHAT’S NEXT?
In Part 2 of this series, I’ll explain

what I believe is the best reason for
using ARM in your embedded designs:
the ARM architectural features that
reduce the code size compared to other
RISC processors. In addition, I’ll intro-
duce you to the various CPU and sys-
tem cores, toolchains, and OSs that are
available in the market today. I



HandsOn Technology 

http://www.handsontec.com 

 
Low Cost 8051C Starter Kit/ Development Board HT-MC-02 
 
HT-MC-02 is an ideal platform for small to medium scale embedded systems 
development and quick 8051 embedded design prototyping. HT-MC-02 can be used as 
stand-alone 8051C Flash programmer or as a development, prototyping and 
educational platform 

 

 
 
Main Features: 

 
 8051 Central Processing Unit. 
 On-chip Flash Program Memory with In-System Programming (ISP) and In Application 

Programming (IAP) capability. 
 Boot ROM contains low level Flash programming routines for downloading code via the 

RS232. 
 Flash memory reliably stores program code even after 10,000 erase and program cycles. 
 10-year minimum data retention. 
 Programmable security for the code in the Flash. The security feature protects against 

software piracy and prevents the contents of the Flash from being read. 
 4 level priority interrupt & 7 interrupt sources. 
 32 general purpose I/O pins connected to 10pins header connectors for easy I/O pins 

access. 
 Full-duplex enhanced UART – Framing error detection Automatic address recognition. 
 Programmable Counter Array (PCA) & Pulse Width Modulation (PWM). 
 Three 16-bits timer/event counters. 
 AC/DC (9~12V) power supply – easily available from wall socket power adapter. 
 On board stabilized +5Vdc for other external interface circuit power supply. 
 Included 8x LEDs and pushbuttons test board (free with HT-MC-02 while stock last) for fast 

simple code testing. 
 Industrial popular window Keil C compiler and assembler included (Eval. version). 
 Free Flash Magic Windows software for easy program code down loading. 

 
PLEASE READ HT-MC-02 GETTING STARTED MANUAL BEFORE OPERATE THIS BOARD 

INSTALL ACROBAT READER (AcrobatReader705 Application) TO OPEN AND PRINT ALL DOCUMENTS 

 



36 Issue 149    December 2002 CIRCUIT CELLAR® www.circuitcellar.com

ast month, I
introduced you to

the world of ARM,
including an overview of

ARM terminology and architecture.
Now, we’ll dive deeper into one of the
selling points for using ARM in embed-
ded systems: code space reduction
compared to other RISC architectures.

As you’ll see, the Thumb processor
mode is beneficial for reducing code
size with some loss of flexibility. Next
month, I’ll complete this series of arti-
cles by showing you how the architec-
ture is implemented in CPU and sys-
tem cores. I’ll also talk about the tools
and tool chains that are available.  

CODE SPACE REDUCTION
The ARM architecture includes three

additional features that work to reduce
the code space required. Because code
space is a concern when using RISC
processors in embedded systems, it’s
nice to see that there is some progress
being made in keeping code storage
costs down. The ultimate way to
reduce code space in an ARM system is
to use the Thumb instruction set. I’ll
explain this topic later in this article.

All ARM instructions are encoded
with a 4-bit conditional code. This
allows for the conditional execution of

every ARM instruction based on the
flags in the program status register.
One time, I heard an FAE give a pres-
entation on ARM and declare that this
appears to be a nice feature, but that
he didn’t know anyone who uses the
bits. I am still trying to figure out
what he was talking about, because
every ARM assembly routine I’ve
either written or seen takes advantage
of the conditional execution. All ARM
compilers will do the same and rely
heavily on the conditional bits. 

These conditional executions reduce
the code space required in comparison
to architectures without this feature.
The conditional executions are encod-
ed such that each condition comes in
a pair with the complimentary condi-
tional. This allows if-then-else con-
structs to be compiled into as little as
three instructions (see Listing 1). The
space efficiency provides a real advan-
tage to using ARM processors in
embedded systems and counters some
of the arguments against RISC in
deeply embedded environments. If
you’re looking for more information
on RISC, you should read Jim Turley’s
January article, “Is RISC Good
Embedded” (Circuit Cellar 138).

You may be concerned about the
flag bits changing if you want to use
the conditional bits on non-branch
instructions. Take a look at the last
portion of code in Listing 1. If the flag
bits changed during the execution of
the first ��� instruction, then you
would lose the ability to perform the
second ��� because of an intervening
jump. Fortunately, the flag bits do not
change by default on arithmetic or
memory access instructions. 

But, what if you wanted to check
for overflow on the ���? To do that,
you must specify that you want to
update the flag bits. This is accom-
plished by using the set flag (i.e., put-
ting an � suffix on the instruction).  

In this example, ��� becomes ����
if you want the flag bits to be updat-
ed. Data comparison instructions set
the flags by default; arithmetic
instructions do so only with the set
flag. For data movement instruc-
tions, check The ARM Architecture
Reference Manual to see if the set
flag is available.  

ARMs to ARMs
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To apply the post-execution incre-
menting, use the following:

�����	
����

���

First, load the value in r1 to r0, and
then increment r1. This syntax is
slightly less tricky than the pre-exe-
cution incrementing. A different reg-
ister could have been used instead of
the literal in both examples. To
decrement, just use a negative literal
or a negative value in the “increment
by” register.

The ARM instruction set provides
a useful set of instructions that are
not within the RISC ideal but are
quite useful in the real world. Some
of the utility of the Load Multiple
and Store Multiple instructions was
demonstrated by describing the
return from functions and exceptions.
Because the interrupt state is polled
on instruction boundaries, the ���
and ��� instructions are atomic. The
��� and ��� are used for stack opera-
tions, context switching, and other
applications where atomically moving
registers off to a contiguous block of
memory is required.  

The Load and Store Multiple regis-
ter commands can operate in any of
four different indexing modes: Full
Ascending; Full Descending; Empty
Ascending; and Empty Descending.
Full or empty indicates whether the
index register points to the last word
written or the next destination
address. Ascending or descending
indicates whether the address in the
indexing register increases or decreas-
es with each load or store. Any of the
four modes can be used. However,
you must store and load using the
same mechanism, otherwise you can
get into some rather interesting off-
by-one error scenarios.

An exclamation point on the index
register causes the value in the index
register to be autoincremented or
autodecremented. The choice becomes
easier if you’re just using the ��� and
��� instructions for stack manipula-
tion and you’re following the APCS.
The APCS defines the stack as a full,
descending stack. The stack pointer
is also incremented or decremented
during the operations. The com-

Another feature that reduces ARM
code size is the ability to use the
shifter and ALU in the same instruc-
tion with the shifter result available
for use by the ALU. Logical shifts left
or right, arithmetic shifts left or right,
and rotate left or right are available.
The shift or rotate amounts can be
either a literal between zero and 31 or
specified in a register. 

The good news is that these opera-
tions are efficient. The bad news, how-
ever, is that this efficiency allowed the
ARM designers to leave out an instruc-
tion to multiply by a constant. All mul-
tiplication by constants must be done
with addition, subtraction, or data
movement instructions. For example,
to multiply r0 by 15 and put the result
in r1, the assembly is written as:

������
��	
��	
�������

That is a reverse subtraction (i.e.,
the second operand is subtracted from
the third operand with the result

placed in the first operand) with a log-
ical shift left of the third operand by
four. In other words, r1 = 16 × r0 – r0.
This may be good for code space, but
it doesn’t make writing the assembly
routines that need a multiply by a
constant particularly easy.

To increase the efficiency and
reduce the code space of loop process-
ing, ARM instructions have autoincre-
ment and autodecrement addressing
modes. This is performed without a
penalty in execution time because of
the pipeline structure of ARM cores.
The incrementing can be implement-
ed prior to or after the instruction is
executed. To increment a pointer
prior to the execution of a load, use
the following code:

�����	
����
���
�

First, load the value in r1+4 to r0, and
then write r1+4 to r1. The � causes
the instruction to write the literal off-
set back into the base register. 

Listing 1—The ARM assembly for a simple C if-then-else demonstrates the use of conditional execution of
all ARM instructions. Notice that five instructions are reduced to three through the use of conditional execu-
tion on non-branch instructions. Eight bytes of code were saved and the overall complexity and maintain-
ability of the code has been improved.
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instructions operate only on the low
registers. But the stack pointer is not
one of the low registers. The Thumb
instruction set provides -(�* and -�-
instructions for saving and restoring
registers on the stack. The -(�* and
-�- instructions operate only the on
low registers and link register.  

With the compromises necessary
to implement Thumb mode, the
question becomes: “How is the per-
formance?” Furber reports the follow-
ing results. Thumb code will take
roughly 70% of the code space of
ARM code. This is more than half
because Thumb code contains 40%
more instructions than equivalent
ARM code. In 32-bit memory sys-
tems, ARM code is faster by 40%;
within 16-bit memory systems,
Thumb code is 45% faster than ARM.
In addition, Thumb code typically
requires 30% less external memory
power than ARM code. [1]

You can enter Thumb mode by exe-
cuting the branch and exchange
instruction, �'. If bit 0 of the address
in the destination register is set, the
processor enters Thumb mode. You
do the same thing to leave Thumb
mode and return to ARM mode. In
that case, bit 0 of the address in the
destination register will be zero. After
entering Thumb mode, the T bit in
the CPSR is set. Don’t set the T bit
in the CPSR directly; instead, you
may set this bit in the SPSR and
then restore the CPSR from the SPSR.
This is how you should handle
returns from exceptions.

Exceptions are always executed in
ARM mode, even if the processor
was in Thumb mode prior to the
exception. Exceptions are then han-
dled the same way they are in pure
ARM mode: the processor makes
appropriate adjustments to the link
register when it enters the exception
mode so that the return from the
exception is identical for interrupted
ARM code or Thumb code.  

There is no need for the exception
handler to determine if the size of
two instructions is 4 or 8 bytes.
Exception handlers that decode
instructions do need to determine if
the interrupted mode was Thumb or
ARM. In particular, software inter-
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mands used to push and pop registers
on the stack are: 

�������-�
�!2��+�����������$
�������-�
�!2��+�����������$

The APCS convention is only for
stack operations. You’re free to use
any indexing mode for other block
transfers to and from memory.

THUMB
The ultimate way to reduce code

size on a 32-bit processor is to com-
press the instructions down to 16 bits.
In essence, this is the Thumb mode in
the ARM architecture. Thumb instruc-
tions originally appeared after architec-
ture V.4 in architecture V.4T, and they
continued into V.5 of the architecture.
Processors that only conform to V.4,
such as the Intel StrongARM, do not
support Thumb mode. 

When you take a rich set of 32-bit
wide instructions and compress them
to 16-bits wide, you have to make cer-
tain compromises and sacrifices.
Conditional execution of every ARM
instruction is lost in Thumb mode.
Only conditional branches use condi-
tion codes in the Thumb instruction
set. This is the way most architectures
operate, but it means that there may
have to be more instructions used in a
Thumb routine than there would be in
an equivalent ARM routine. 

All Thumb instructions can use reg-
isters r0 through r7, but only a limited
subset can operate on registers r8
through r15. Note that the limited set
includes the program counter. In the
nomenclature of the Thumb instruc-
tion set, registers r0 through r7 are
called the low registers. Registers r8
through r15 (PC) are referred to as the
high registers. In addition to limiting
the register set, immediate values
encoded in the instructions are limit-
ed. Similarly, PC-relative branches are
restricted to an 8-bit signed offset for
conditional branches and an 11-bit off-
set for unconditional branches.

The Load Multiple and Store
Multiple register commands are limit-
ed to the Full Descending index mode.
The instructions do not use the �� suf-
fix; instead, they use the non-stack
alias �� (i.e., ����� and ����� . These

rupt and undefined instruction excep-
tion handlers need to pay particular
attention to the T bit in the SPSR
register. This allows them to know
the size and format of the instruc-
tion to be decoded. If the T bit in the
SPSR is set, the processor will return
to Thumb mode when it exits the
exception handler.  

Calling ARM routines from Thumb
code or calling Thumb routines from
ARM code is called “interworking.”
When compiling a routine written in
a higher-level language like C that
requires interworking, the compiler
and linker will insert the appropriate
veneer to allow for the transition
between the two modes. 

For assembly language routines,
you have to pay attention to getting
the calls and returns correct in inter-
working routines. In an interworking
routine, you cannot perform a branch
and link call, �. Instead, you need to
implement the following:

�����	
��2�(���(��&����������
������
�-����
�'���	

-� is the latter instruction plus
eight or the instruction after �'.
Similarly, to return from a function,
you cannot implement a ����-�

�� instruction. Instead, you have to
execute two instructions: first, move
the �� into another register, and
then implement a �'. 

In architecture V.4T, you cannot
simply use a load multiple or pop with
the program counter as the destina-
tion. You need to extract the saved
return address from the stack and then
execute a �'. Version 5T of the archi-
tecture does not require the use of the
�' instruction to change modes. In
V.5T, the branch, link, and exchange
instruction (��') behaves in the same
way as setting up the link register and
then executing a �' does in V.4T. You
can also return and exchange modes
using the ��� or -�- instructions.

At compile time, you need to speci-
fy that you’re targeting a Thumb sys-
tem and that you want interworking
support. Because interworking requires
some sacrifices, you should specify
interworking only on those routines
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that require it. It’s probable that you
will not want to compile in the inter-
working support for a routine that’s
called from its own mode and is either
a leaf function or one that merely
calls functions that are also in the
same mode. Libraries can get around
this by designating separate libraries
for ARM mode, Thumb mode, and
interworking. The linker then deter-
mines with which library to link.

This all sounds excessively compli-
cated. In reality, though, things are
much simpler on most Thumb sys-
tems. You’ll probably use Thumb
mode if you have your program stored
in 16-bit memory or you’re using a
processor with a 16-bit data bus.
You will probably just compile all of
your User mode code to use Thumb
instructions. Note that it’s essential
to have start-up code that knows
how to call Thumb code and excep-
tion handlers compiled to use ARM
instructions. There are situations
where you will want some code
compiled for Thumb and some oth-
ers for ARM. In those special cases,
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you will have to pay attention to all of
the details of interworking.  

NEXT STOP
Next month, I’ll explain the imple-

mentation of the architecture in CPU
and system cores, tool chains, and
tools. You’ll see ARM processors tar-
geted toward replacing legacy micro-
controllers and those intended for high-
performance multimedia systems. In
addition, I’ll tell you about tool chains
with prices that are acceptable to the
hobbyist, as well as some that are
priced at levels that make even large
corporations uncomfortable. These
topics will close out my introduction
to the world of ARM processors. I
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n my last two
articles, I described

the ARM architec-
ture, instruction set, and

Thumb mode, but I barely mentioned
anything about its implementation.
Although I find much of the imple-
mentation independence to be a nice
feature of the ARM architecture, it
won’t help you drop a specific chip
into a design. Therefore, in this final
article, I’ll cover the practical topics of
cores, tools, and tool chains.

ARM CORES
The cores are the physical imple-

mentation of the ARM architecture.
Although there were ARM cores prior
to the ARM7TDMI, I’ll discuss only
those that you’re likely to use in your
embedded designs. If you’re using an
old Apple Newton, please use the refer-
ences at the end of this article to find
more information about the ARM6.

The ARM7 core is an implementa-
tion of the V.4T architecture that con-
tains a three-stage pipeline with a sin-
gle memory port without an inherent
internal memory hierarchy. This core
is the basis for the ARM7TDMI. 

The processor core supports Thumb
instructions (the “T” in the name) and
32 × 32 bit multiplication with a 64-bit

result (the “M” in the name). In addi-
tion, the core has the JTAG debug mod-
ule and Embedded ICE JTAG in-circuit
emulator module, which provides a
mechanism for hardware breakpoints
and watch points. Additional coproces-
sors, such as a memory management
unit (MMU) or memory protection
unit (MPU), can be included with the
ARM7TDMI core. You shouldn’t
assume that these coprocessors are
present if they aren’t specified, because
the core exists without them. 

The core is used mainly in low-cost,
deeply embedded designs. ARM7TDMI
cores tend to be in CPUs that have
microcontroller-like peripheral sets,
and they’re used in CPUs meant for
low-power designs where battery life
is more important than performance.
This core is not limited to deeply
embedded designs. ARM7TDMI is
supported in Palm OS 5, the first non-
68K version of Palm OS.  

The ARM720T is a CPU core instead
of a processor core like the ARM7TDMI.
It has an ARM7TDMI processor core.
This core adds a memory hierarchy,
including write buffers, an MMU, and
an 8-KB, four-way, set-associative uni-
fied cache. The write buffer has a capac-
ity of eight data words in four unique
addresses. The exception vectors can be
remapped to start at 0xFFFF0000.
Note that this is a Windows CE oper-
ating system requirement.

The ARM720T is used in systems
with resource-intensive operating sys-
tems (e.g., WindowsCE and Linux).
These systems tend to be heavier than
those that use a straight ARM7TDMI.
You’ll find that designs that require
good memory-system performance but
not the fastest processor on the block
will do well with the ARM720T.  

The ARM740T has the memory per-
formance features of the ARM720T, but
it doesn’t have the MMU. Instead, the
’740T has an MPU that allows you to
restrict access to memory and memory-
mapped I/O regions without the over-
head of the MMU. Memory system
safety and performance with greater
predictability than an MMU system is a
combination that meets the needs of
many real-time and embedded systems. 

In comparison to the ARM7 family,
the ARM9 processor core contains var-

ARMs to ARMs 
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intended for high-end designs, is
apparently targeted at the same mar-
ket as the StrongARM. The latter has
a 16-bit data bus and is intended for
designs that don’t require the perform-
ance of the PXA250. 

The PXA210 has a maximum clock
frequency of 200 MHz. According to
Intel marketing material, the PXA250
product line’s clock frequency will
increase to 600 MHz. Extensive infor-
mation is available on the Intel devel-
oper web site. Since its release, the
400-MHz version of the PXA250 has
replaced the StrongARM as the
processor of choice among the high-
end PocketPC PDAs. 

The PXA250 and PXA210 have a
high level of system-level peripheral
integration. Integrated LCD, PCM-
CIA/Compact Flash, and USB client
controllers have removed the need for
the companion chip that was required
for the StrongARM. Both processor
families have the usual array of serial
controllers as well. This level of inte-
gration has become a must in the
hand-held and wireless worlds.  

Another requirement in those
worlds is multilevel power manage-
ment. The XScale processors take an

ious performance improvements while
staying within the V.4T architecture.
The core has a five-stage pipeline and
separate instruction and data ports. The
pipeline improvements and changes that
were incorporated to increase memory
bandwidth allow the ARM9TDMI core
to run at a higher clock frequency than
the ARM7TDMI core.  

The ARM920T and ARM940T cores
are analogous to the ARM720T and
ARM740T cores, respectively. With
read and write ports to the ARM9TDMI
core, the ARM920T and ARM940T
contain separate data and instruction
caches rather than the unified cache
in the ARM7 cores. The interface to
external memory is still unified.

INTEL CORES
All of the cores that I’ve described

so far are licensable from ARM, Ltd.
There are high-end cores available
from Intel where the architecture is
licensed from ARM but not the core
itself. Digital Semiconductor initially
did this, but Intel assumed the rela-
tionship with ARM after acquiring
Digital Semiconductor.

The StrongARM core (SA1), which
was originally designed by Digital
Semiconductor, incorporated perform-
ance improvements that were later
adopted by ARM, including a five-stage
pipeline. This core was developed prior
to the development of the Thumb
instruction set and the Debug and
Embedded ICE macrocells. Essentially,
this means that StrongARM processors
have performance numbers at or
exceeding ARM9 cores but don’t have
all of the features available in the
ARM7TDMI. Specifically, the JTAG
port on chips based on the SA1 core
can be used only for boundary scan
and ROM loading.

Until recently, the StrongARM was
the ARM System-on-a-Chip technolo-
gy of choice for embedded designs that
needed processing power, memory
system performance, and low-power
usage. The SA1110 has been used
widely in Windows CE devices, espe-
cially in high-end, PocketPC-based
PDAs such as the Compaq iPAQ and
now defunct HP Jordana. 

The SA1110 comes in 206- and
133-MHz models. As part of its

power-management features, the clock
rate can be reduced from the maxi-
mum for the model.

Intel acquired the StrongARM core in
its acquisition of Digital Semiconductor.
The age of the design, the design deci-
sions that limited productions to for-
mer Digital Semiconductor fabs, and
the lack of a StrongARM upgrade path
aided Intel in deciding to move for-
ward with the new XScale microarchi-
tecture. XScale is based on the ARM
V.5TE architecture; therefore, it con-
tains the Thumb instruction set and
DSP functionality. This specific
implementation of the ARM architec-
ture is an Intel-only design.  

XScale uses many of the latest
advancements in RISC processor design
to maximize performance and limit
pipeline stalls and other mechanisms
that increase the cycles per instruc-
tion from the theoretical minimum.
The design is interesting, but it would
require another article to do it justice. If
you’re interested in learning more
about the design, you should refer to
the documentation on Intel’s web site.  

In February 2002, Intel released the
first two XScale processors, PXA250
and PXA210. The former, which is

Mode Description Entered Exited

Run Standard mode. Clock frequency Software Software or power fail
is selectable. All other modes are 
entered from Run mode; other 
modes must exit into Run mode.

Turbo Clock speed is a multiple of the Software Software
Run clock speed. Intended
for times when extremely fast
processing of instructions is 
required with few accesses of
external memory. External
memory accesses may cause 
pipeline stalls because of the high
internal clock speed.

Idle CPU clock is disabled. On-chip Software Interrupt, generally coming 
peripherals still receiving nominal from a peripheral.
clock frequency.

Sleep Only the real-time clock and Software or power fail Preselected group of inter-
power manager receive input rupts. System must reboot 
strobes. SDRAM is placed when exiting Sleep mode;
in Self-Refresh mode. The essentially all CPU state
internal processor state is lost. information was lost.

Table 1—Although the clock frequency of the Run and Turbo modes is selectable, it’s best to change the frequency
only when booting the system. Changing the frequency during normal running requires several additional steps
because of the latency of frequency change and the effect it has on system stability. 
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GNU TOOLS
The GNU tool chain is available for

ARM; it includes the GCC compiler,
the GNU binutils package, and a
library package. The newlib open-
source library package, currently spon-
sored by Red Hat, is meant for embed-
ded applications, so it fits well. The
newlib license is different from the
GNU general public license (GPL); it’s
considered to be friendlier toward
commercial projects than the GPL. 

Although the commercial tool chains
generally provide a warm and comfort-
able development environment, the
GNU tool chain requires more of an
investment of your time in order to be
fully set up for development. I’ve found
the GNU tools to be worth the effort,
but they’re truly not for everyone. 

In December 2001, Bill Gatliff wrote
an excellent article that provides a ter-
rific starting point for setting up the
GNU tool chain with the newlib C
library (“Why Not GNU?” Circuit
Cellar 137). If you’re only using ARM
code and don’t want Thumb or
Thumb Interworking, then you don’t
need to look farther than Bill’s article.
But, if you do want Thumb or
Interworking capabilities, there are
additional steps that you must take.  

The 2.95.x versions of GCC don’t
include Thumb support. To use Thumb
or Interworking, you must implement
either one of the 3.x versions or a
recent development snapshot. Using a
recent version still will not give you
interworking capability without some
additional effort on your part. 

First, you must take out the com-
ments in the multilib sections for inter-
working in the $GCC_SOURCE/gcc/
config/arm/t-arm-elf file in the GCC
source distribution. Then, go through
the tool chain compilation steps
described in Bill’s article. If you have an
earlier version of newlib compiled for
ARM, you’ll need to recompile it with

interesting approach to power manage-
ment with a four-level system (see
Table 1). The addition of Turbo mode
is quite telling; embedded processors
have come now that they’re capable of
running faster than 100-MHz SDRAM.

For those of you writing code, the
PXA210 and PXA250 have two advan-
tages over the StrongARM. First, the
support for Thumb mode is a nice
addition to systems that use low-cost
16-bit memory. This is especially
important for the PXA210 because its
external memory bus is only 16-bits
wide. The second advantage is expan-
sion. Both the PXA210 and PXA250
have JTAG ports that you can use for
software debugging.  

TOOLS AND TOOL CHAINS
With a large number of chip offer-

ings, ranging from low-end processors
for deeply embedded work to high-end
processors for demanding PDA appli-
cations, it’s not surprising that there’s
a great selection of tools for ARM. You
can find many different tool chains,
JTAG emulators, ROM monitors, and
evaluation boards to help you go from
a concept to a deployable product.

There are numerous commercial
tool chains available for ARM proces-
sors. ARM has its own set of tools, as
well as its own JTAG emulator. Green
Hills, Metaware, IAR, and others also
have tools for ARM. 

The tool chains normally include
some sort of professional IDE, an
assembler, C compiler, source code
debugger, and possibly a simulator.
Of course, these all come with a pro-
fessional price tag to match. Most of
the development tools have time-
limited evaluation versions that are
available free of charge. The evalua-
tion versions generally give you a
month or two to decide whether or
not you’re going to invest the money
in the tool chain.

the GCC version that supports inter-
working. Otherwise, you will not get
the multilib support in newlib.  

To determine if you have the proper
interworking support in a tool chain,
type ��� �����	
���

��
��. If all
went well in the earlier steps, you’ll
see lines containing 
������	
���
����. The additional GCC command
line arguments for multilib support
are shown in Table 2.

JTAG EMULATORS
One of the advantages of using one

of the cores with the Debug and
Embedded ICE units is the JTAG debug
port. You can hook a JTAG in-circuit
emulator to the processor to assist in
all of the stages of development. 

There are JTAG emulators available
for ARM in all price ranges. The
Wiggler and Raven are within the hob-
byist’s price range. More expensive
emulators from ARM, Agilent, Green
Hills, Abatron, and others are accessible
using Ethernet interfaces. When buying
an emulator, verify that it will work
with the debugger in your tool chain. 

ROM MONITORS
The ARM standard ROM monitor

that’s available on most development
boards is the ARM Angel debugger.
Angel provides a standard interface for
debuggers. The debuggers in both com-
mercial and GNU tool chains support
this connection mechanism.

You can use Angel in a stand-alone
mode or, in later stages of develop-
ment, in a more limited role, applying
the Angel library to provide start-up
code, entry points, and raw device
drivers. ARM provides a porting guide
that will help you get Angel running
on your custom hardware. [1]

Red Hat’s RedBoot debug monitor is
available for some ARM platforms.
RedBoot is based on the eCos operating
system; therefore, if eCos is available
for your platform, RedBoot probably is
too. RedBoot provides both a debugger
interface for gdb and a command line
interface for downloading and flashing
applications on your board. RedBoot
operates over a serial line or Ethernet.

Angel and RedBoot work well for
general application debugging. One
thing you need to remember if you’re

Module mode GCC options

ARM only, no interworking No additional options necessary, can use �����
Thumb only, no interworking required ��
����
ARM with interworking ��
������	
������ �����
Thumb with interworking ��
���� ��
������	
������

Table 2—A GCC version later than V.2.95 is required to have support for Thumb mode and ARM-Thumb
Interworking. Note that for ARM modes, ����� can be specified on the command line but isn’t necessary.
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using either Angel or RedBoot is that
both require their own exception han-
dlers. You will need to chain the
ROM monitor’s exception handlers
after your own exception handlers. So,
how can you step through your inter-
rupt handlers? Unfortunately, you’ll
need to use either a JTAG ICE or
ROMulator, or you’ll have to set LEDs.  

DEVELOPMENT BOARDS
There’s quite a selection of develop-

ment boards available from ARM and
the silicon manufacturers themselves.
For ARM7TDMI development aimed
at deeply embedded targets with lim-
ited resources, the Atmel AT91EBxx
series and ARM Evaluator-7T fit the
bill. Both boards are inexpensive and
contain systems appropriate for start-
ing deeply embedded designs.  

The price tag will increase substan-
tially if you start working on an eval-
uation board base on an ARM720T or
ARM9 family processor. These are
higher performance chips meant for
systems with greater resources, so
these evaluation boards come with
much more memory and Compact
Flash than the straight ARM7TDMI
boards. Most non-Intel development
boards come without a screen.

Currently, the situation for finding
development boards for the Intel ARM
offerings is in a state of flux. The Intel
StrongARM development boards are no
longer available from the company.
Third-party evaluation boards are avail-
able from Applied Data Systems. There
is at least one XScale development
board currently available from Intel. 

In addition, Applied Data Systems
has added an XScale development
board to its product line. The boards for
the Intel offerings tend to be aimed at
PDAs, wireless consumer devices,
Internet appliances, or set-top boxes.
They usually have PDA or Internet
appliance-sized LCD screens and are
loaded with memory and Compact
Flash. Even the form factor of the Intel
Assabet StrongARM board is PDA-sized. 

WHAT NOW?
Start-up code and a mixture of C and

assembly code for the Atmel AT91EB40
eval board are on the Circuit Cellar ftp
site. This code will demonstrate much

Robert Martin received a Ph.D. in
Physics from The College of William
and Mary. Currently, Robert is an
engineering manager directing a team
of embedded software engineers near
Phoenix, Arizona. You may reach him
at rmartin@sonoranfoothillseng.com.

PROJECT FILES
To download the code, go to
ftp.circuitcellar.com/pub/Circuit_
Cellar/2003/150/.

REFERENCE
[1] ARM, Ltd., “Application Note

54: Angel Porting Guide,”
ARM DAI 0054A, 1998.

RESOURCES
ARM, Ltd., “ARM Architecture
Reference Manual,” DDI 0100E,
1996.

eCos, sources.redhat.com/ecos/. 

S. Furber, ARM System-On-Chip
Architecture, 2nd ed., Addison-
Wesley, Harlow, England, 2000.

Intel developer information,
developer.intel.com.

SOURCES
Angel Debug monitor, ARM
ARM, Ltd.
www.arm.com

AT91EB40 Evaluation board
Atmel Corp.
www.atmel.com

PXA210/250, StrongARM, Xscale 
Intel Corp.
www.intel.com

RedBoot Debug monitor
Red Hat, Inc.
www.redhat.com

of what has been discussed here. If
you’re new to ARM, this should pro-
vide a starting point for future work.

Next time a project comes your
way that requires something more
than a simple microcontroller, think
about ARM instead of just reaching
for an embedded x86 or 68K. There
are a number of OS choices available
for ARM processors, ranging from
RTOSs to WindowsCE or Linux. I

www.phytec.com

phyCORE® -ARM7/AT91
New Generation
Single Board Computer

(800) 278-9913
PHYTEC America, LLC    ■   203 Parfitt  Way SW, G100   ■    Bainbridge Island, WA  98110   USA
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