
LPC210X ‘ARMEE’
Part 1: an ARM processor survey

elektor electronics- 3/200546

Tony Dixon

In the first instalment of a three-part article we will look at recent
developments in 32-bit ARM based microcontrollers,
concentrating on those devices that are available, do not cost an
arm and a leg or require a major investment in surface mount
soldering equipment!

ARM stands for Advanced RISC Machine, where RISC
means Reduced Instruction Set Computer. The ARM
32-bit architecture has been around for a number of
years and has been used in products where low
power consumption is essential such as for mobile
phones and PDA’s.
Its 32-bit core is available in several guises including
the ARM7, ARM9, ARM10 and the recently announced
ARM11, each of which offers enhanced levels of com-
puting power.

The ARM was usually only available as a microprocessor
device, where it required external program and data
memory to complete a system. However several compa-
nies are now offering a 32-bit ARM based microcon-
troller with sufficient memory options for them to be con-
sidered worthy microcontroller alternatives. Table 1
shows a selection of ARM based microcontrollers from
three companies, Analog Devices, OKI Semiconductors
and Philips Semiconductors. Other companies such as
Atmel, NetSilicon, Samsung and TI offer similar devices

3/2005 - elektor electronics 47

DEVELOPMENT BOARD (1)

Overview of the
ARM7TDMI core

The ARM7 core is a 32-bit Reduced Instruction Set Computer
(RISC). It uses a single 32-bit bus for instruction and data.
The length of the data can be 8, 16 or 32 bits and the
length of the instruction word is 32 bits.

What Does TDMI™ mean?
The ARM7TDMI is an ARM7 core with 4 additional features
identified with letter codes, as follows
T: support for the Thumb (16 bit) instruction set.
D: support for debug
M: support for long multiplies
I: include the EmbeddedICE module to support embedded

system debugging.

Thumb mode (T)
An ARM instruction is 32-bits long. The ARM7TDMI proces-
sor supports a second instruction set that has been com-
pressed into 16-bits, the Thumb instruction set. Faster execu-
tion from 16-bit memory and greater code density can usu-
ally be achieved by using the Thumb instruction set instead
of the ARM instruction set, which makes the ARM7TDMI core
particularly suitable for embedded applications.
However the Thumb mode has two limitations and these are:
Thumb code usually uses more instructions for the same job,
so ARM code is usually best for maximising the performance
of the time-critical code.
The Thumb instruction set does not include some instructions
that are needed for exception handling, so the ARM code
needs to be used for exception handling. See ARM7TDMI
User Guide for details on the core architecture, the program-
ming model and both the ARM and ARM Thumb instruction
sets.

Long multiple (M)
A 32-bit Multiplier function qualifies the core for complex
arithmetic tasks usually performed by a DSP. The ARM7TDMI
instruction set includes four extra instructions that perform
32-bit by 32-bit multiplication with 64-bit result and 32-bit
by 32-bit multiplication-accumulation (MAC) with 64-bit
result.

Debugging (D)
A special hardware extension allows for Debugging within
an application. This is made possible by means of a bound-
ary-scan cell array around the core driven by a JTAG port
and a TAP controller.

EmbeddedICE (I)
The EmbeddedICE extends the debugging functions and this
module contains the breakpoint and watch point registers
that allow the code to be halted for debugging purposes.
These registers are controlled through the JTAG test port with
the aid of software debugging tools running on a computer.
When a breakpoint or watch point is encountered the
processor halts and enters debug state. Once in a debug
state, the processor registers may be inspected as well as the
Flash/EE, SRAM and the Memory Mapped Registers

nRESET

nMREQ

SEQ

ABORT

nIRQ
nFIQ

nRW

LOCK
nCPI
CPA
CPB

nWAIT
MCLK

nOPC

nTRANS

Instruction
Decoder

&
Control
Logic

Instruction Pipeline
& Read Data Register

DBE D[31:0]

32-bit ALU

Barrel
Shifter

Address
Incrementer

Address Register

Register Bank
(31 x 32-bit registers)

(6 status registers)

A[31:0]
ALE

Multiplier

ABE

Write Data Register

nM[4:0]

32 x 8

nENOUT nENIN

TBE

Scan
Control

BREAKPTI
DBGRQI

nEXEC

DBGACK
ECLK

ISYNC

APE
BL[3:0]

MAS[1:0]

TBIT
HIGHZ

040444 - 13

& Thumb Instruction Decoder

I
n
c
r
e
m
e
n
t
e
r

b
u
s

A
L
U

b
u
s

P
C

b
u
s

A

b
u
s

B

b
u
s

but these are usually available in larger BGA (ball grid
array) packaging only, making them less suitable for
hand prototyping. So what’s available on the ARM mar-
ket we can actually obtain and handle? Let’s have a look
what a number of major manufacturers in the ARM arena
have on offer.

Analog Devices
Analog Devices (www.analog.com) is not a name nor-
mally associated with microcontrollers, however they are
about to change this view by creating a microcontroller
product with a range of precision analogue interfaces.
Elektor Electronics (leading the way!) have already pub-
lished a series of articles on Analog Devices AduC812
8052 based controllers (Ref. 1). Analog Devices have
released an updated range using an ARM7TDMI as the
computing engine.
The ADuC702x family of devices from Analog Devices
integrates a 32-bit ARM7TDMI core with a 12-bit data
converter that can have up to 16 channels supporting
one million samples/sec. The ADuC702X devices also
feature up to four 12-bit DACs with a precision bandgap
reference sensitive to 10 ppm/°C. Other peripherals
include a comparator, a small programmable-logic array

(PLA) for glue logic, an on-chip temperature sensor
(±3°C) and a three-phase 16-bit PWM generator. Of
these peripherals the programmable-logic array is the
most interesting to find on a microcontroller.
A JTAG interface is provided for debugging the chip,
while the UART can be used to program the Flash
memory in-situ.

An on-chip oscillator will drive the ADuC702x at speeds
of up to 35 MHz and is 2% accurate. An external clock
is required to run at speeds up to the 45- MHz limit.
Memory options include both a 32-kByte Flash memory
for the ADuC7024 and a 62-kByte Flash memory for the
ADuC7026 and all include 8 kBytes of RAM. Packaging
options range from a 6×6-mm, 40-lead CSP, a 64-pin
LQFP and an 80-pin LQFP. These 3-V devices can operate
within a temperature range of –40 to +85, or at
extended temperatures up to +105, or +125°C.
Analog Devices offer a low-cost quick start development
system called QuickStart, which includes a power supply,
cables, evaluation board, JTAG emulator and software-
development tools from Keil Software and IAR Systems.
The QuickStart Development System sells for $249 and is
available directly from Analog Devices.
Of the devices offered, the 64-pin and 80-pin devices

elektor electronics- 3/200548

Table 1. ARM processor comparison matrix.
Device Package RAM Flash Clock I/Os UARTs SPI

AduC7020 40-pin LFCSP 8 kB 62 kB 0.3-45 MHz 14 1 1

AduC7021 40-pin LFCSP 8 kB 62 kB 0.3-45 MHz 13 1 1

AduC7022 40-pin LFCSP 8 kB 62 kB 0.3-45 MHz 13 1 1

AduC7024 64-pin LQFP 8 kB 62 kB 0.3-45 MHz 30 1 1

AduC7025 64-pin LQFP 8 kB 62 kB 0.3-45 MHz 30 1 1

AduC7026 80-pin LQFP 8 kB 62 kB 0.3-45 MHz 40 1 1

AduC7027 80-pin LQFP 8 kB 62 kB 0.3-45 MHz 40 1 1

LPC2104 48-pin TQFP 16 kB 128 kB 0-60 MHz 32 2 1

LPC2105 48-pin TQFP 32 kB 128 kB 0-60 MHz 32 2 1

LPC2106 48-pin TQFP 64 kB 128 kB 0-60 MHz 32 2 1

LPC2114 64-pin LQFP 16 kB 128 kB 0-60 MHz 46 2 2

LPC2124 64-pin LQFP 16 kB 256 kB 0-60 MHz 46 2 2

LPC2212 144-pin LQFP 16 kB 256 kB 0-60 MHz 112 2 2

LPC2214 144-pin LQFP 16 kB 256 kB 0-60 MHz 112 2 2

LPC2119 64-pin LQFP 16 kB 128 kB 0-60 MHz 46 2 2

LPC2129 64-pin LQFP 16 kB 256 kB 0-60 MHz 46 2 2

LPC2194 64-pin LQFP 16 kB 256 kB 0-60 MHz 46 2 2

LPC2292 144-pin LQFP 16 kB 256 kB 0-60 MHz 112 2 2

LPC2294 144-pin LQFP 16 kB 256 kB 0-60 MHz 112 2 2

ML674001 144-pin LQFP 32 kB 256 kB 1-60 MHz 42 2 1

ML674001 144-pin LQFP 32 kB 512 kB 1-60 MHz 42 2 1

ML675001A 144-pin LQFP 32 kB 256 kB 1-60 MHz 42 2 1

ML675001A 144-pin LQFP 32 kB 512 kB 1-60 MHz 42 2 1

are probably the most usable by our readership for their
prototyping ease.

Philips
Of all the companies offering ARM microcontrollers
Philips (www.semiconductors.philips.com) seem to be the
company pushing the ARM microcontroller the most and
have already released an extensive range of microcon-
trollers based on a 32-bit ARM7TDMI-S core (see inset).
Philips initially offered the LPC210x which featured 16 to
64 kB of RAM dependant on the device, together with
128 kB of Flash memory and all operating at 60 MHz.
Other peripherals include two UARTs, SPI and I2C inter-
faces, 6-channel PWM and 32-bit digital I/O port. All of
which are fitted in a small 48-pin LQFP package!
All three controller chips are based on a common system
architecture approach which offers the same memory
map, vectored interrupt controller and similar peripheral
complements. Also common to them are the same Flash
programming and updating mechanism, JTAG debug-
ging and emulation facilities.
These devices operate from 1.8 V for the core CPU func-
tions and 3.3 V for the I/O and peripherals, with the
general I/O being 5 V tolerant.

Philips has extended the LPC21xx family to include new
devices packaged either in a 64-pin or a 144-pin LQFP.
These new family members offer larger Flash memory
options, an additional SPI interface and additional digital
I/O lines. They also included either a 4 or 8 channel
ADC with 10-bit resolution, 2- or 4-channel CAN bus
interface and the option of an external memory interface
on the larger 144-pin devices.
The LPC210x devices have a number of development
and evaluation boards from companies such as Hitek,
Keil, IAR and Nohau.
According to press releases from Philips we can expect
future members of the LPC21xx and LPC22xx family to
include Ethernet, USB, and 802.11 capabilities. Some-
thing to look forward to!

OKI Semiconductors
OKI Semiconductors (www.oki.com) are a Japanese com-
pany who offer a broad range of ICs and have been pro-
viding 32-bit ARM-based solutions for a number of years.
Oki have extended its microcontroller portfolio by intro-
ducing a new series of general-purpose 32-bit microcon-
trollers based on an ARM7TDMI core.
These new two lines consist of the ML674001 and the

3/2005 - elektor electronics 49

I2C CAN Timers PWM ADC DAC Notes

2 - 2 - 5 x 12-bit 4 x 12-bit PLA, Temp Sensor

2 - 2 - 8 x 12-bit 2 x 12-bit PLA, Temp Sensor

2 - 2 - 10 x 12-bit - PLA, Temp Sensor

2 - 2 3 10 x 12-bit 2 x 12-bit PLA, Temp Sensor, 3-Phase

1 - 2 3 12 x 12-bit - PLA, Temp Sensor, 3-Phase

1 - 2 3 12 x 12-bit 4 x 12-bit PLA, Temp Sensor, 3-Phase

1 - 2 3 16 x 12-bit - PLA, Temp Sensor, 3-Phase

1 - 4 x 16-bit 6-ch - -

1 - 4 x 16-bit 6-ch - -

1 - 4 x 16-bit 6-ch - -

1 - 4 x 16-bit 6-ch 4 x 10-bit -

1 - 4 x 16-bit 6-ch 4 x 10-bit -

1 - 4 x 16-bit 6-ch 8 x 10-bit - with external memory interface

1 - 4 x 16-bit 6-ch 8 x 10-bit - with external memory interface

1 2 4 x 16-bit 6-ch 4 x 10-bit -

1 2 4 x 16-bit 6-ch 4 x 10-bit -

1 4 4 x 16-bit 6-ch 4 x 10-bit -

1 2 4 x 16-bit 6-ch 8 x 10-bit - with external memory interface

1 4 4 x 16-bit 6-ch 8 x 10-bit - with external memory interface

1 - 7 x 16-bit 2-ch 4 x 10-bit - with external memory interface

1 - 7 x 16-bit 2-ch 4 x 10-bit - with external memory interface

1 - 7 x 16-bit 2-ch 4 x 10-bit - external memory i/f, 8K cache

1 - 7 x 16-bit 2-ch 4 x 10-bit - external memory i/f, 8K cache

ML675001 series. The ML674001 series comprises of
three products: the ML674001, the ML67Q4002 and the
ML67Q4003. While the ML675001 series consisting of
the ML675001, the ML67Q5002 and the ML67Q5003.
The ML674001 and ML675001 are ROMless parts.

The ML67Q4002/3 and ML67Q5002/3 microcon-
trollers offer large Flash memory options up to 512 kB
and 32 kB of RAM. Other peripherals include 1 × system
timer, 6 × general purpose timers, 2 × PWM, watch dog
timer, general purpose I/O ports, ADC converters and
2 × DMA channels. Communications are provided
2 × UARTs; one UART is an industry standard 16550A
and has 16 bytes FIFO for both send and receive, with
the other having no FIFO; an I2C and SPI interface. The
chips also include an external memory interface that fea-
tures a SDRAM controller allowing for ROMs (including
Flash memories), SRAMs, DRAMs, or I/O devices can be
directly connected to the on-board SDRAM controller.
A standard JTAG interface is provided for debugging
and device programming. These chips can also be pro-
grammed by using a special Boot mode program built
into the device. In boot mode, the on-chip boot ROM
downloads a Flash writing application into the internal
RAM area of the MCU. This application then handles the
serial transfer and writing of internal Flash through the
UART interface of the MCU.

The chips require 2.5 V for the core CPU functions and
3.3 V for the I/O and peripherals. The series operate in

a wide temperature range of –40°C to +85°C.
The ML674001 series can operate at a maximum fre-
quency of 33 MHz, while the ML675001 series operates
at a maximum frequency of 60 MHz. The ML675001
series has an 8-kB unified cache memory allowing the
chip to operate at the higher clock speed.

The ML67Q4002/3 and ML67Q5002/3 are packaged
in a 144-pin LQFP and all the microcontrollers are of a
pin-compatible design, allowing for easier upgrade from
the ML674001 series to the ML675001 series with a
minimum of program and board layout change.

Next month’s issue
has a heavy focus on microcontrollers and it is no coinci-
dence that you will be able to read about an extremely
powerful ARM microcontroller development system you
can build at home, in class or in the lab. As far as we
know, this is a first in electronics magazine publishing but
then again who else but Elektor?

(040444-1)

Reference:
1. Intelligent Sensor/Actuator Controller (ISAC), parts 1-4,

Elektor Electronics October – December 2001 and
January 2002.

elektor electronics- 3/200550

Advertisement

HandsOn Technology

http://www.handsontec.com

Low Cost 8051C Starter Kit/ Development Board HT-MC-02

HT-MC-02 is an ideal platform for small to medium scale embedded systems
development and quick 8051 embedded design prototyping. HT-MC-02 can be used as
stand-alone 8051C Flash programmer or as a development, prototyping and
educational platform

Main Features:

 8051 Central Processing Unit.
 On-chip Flash Program Memory with In-System Programming (ISP) and In Application

Programming (IAP) capability.
 Boot ROM contains low level Flash programming routines for downloading code via the

RS232.
 Flash memory reliably stores program code even after 10,000 erase and program cycles.
 10-year minimum data retention.
 Programmable security for the code in the Flash. The security feature protects against

software piracy and prevents the contents of the Flash from being read.
 4 level priority interrupt & 7 interrupt sources.
 32 general purpose I/O pins connected to 10pins header connectors for easy I/O pins

access.
 Full-duplex enhanced UART – Framing error detection Automatic address recognition.
 Programmable Counter Array (PCA) & Pulse Width Modulation (PWM).
 Three 16-bits timer/event counters.
 AC/DC (9~12V) power supply – easily available from wall socket power adapter.
 On board stabilized +5Vdc for other external interface circuit power supply.
 Included 8x LEDs and pushbuttons test board (free with HT-MC-02 while stock last) for fast

simple code testing.
 Industrial popular window Keil C compiler and assembler included (Eval. version).
 Free Flash Magic Windows software for easy program code down loading.

PLEASE READ HT-MC-02 GETTING STARTED MANUAL BEFORE OPERATE THIS BOARD

INSTALL ACROBAT READER (AcrobatReader705 Application) TO OPEN AND PRINT ALL DOCUMENTS

Tony Dixon

Part 2:
build and program the ARMee board

elektor electronics - 4/2005

LPC210x ‘ARMee’

20

ages required by the LPC210x: 1.8 V for
its CPU core and 3.3 V for its peripher-
als and I/O. The LPC210x micro has 5-
V tolerant I/O and is capable of directly
driving 5-V TTL logic.
Like many modern processors the
LPC210x provides a reset circuit inter-
nally, so an external pull-up resistor is
all that is required to finish the design.
Pushbutton S2 is available to allow for
manual resets to occur.

RS232 serial communication is pro-
vided at connector K5 and the interface
is built around IC1, a MAX3232 RS232
Transceiver chip providing two driver
and two receiver circuits. The
MAX3232 is powered from the 3.3-V
supply and an on-board charge pump
provides the +12 V and –12 V needed
by the RS232 interface. The board has
the option of a second RS232 interface
at connector K6 provided by the sec-
ond RS232 driver and receiver circuits
of IC1. Jumpers JP6 and JP7 should be
fitted to the correct position to enable
the second RS232 port.

If two RS232 interfaces are not
required then connector K6 can provide
a Modbus pin-compatible RS485 inter-
face. The RS485 interface is driven by
IC2, a MAX3082 RS485 Transceiver
chip from Maxim, which is also pow-
ered from the 3.3-V supply. Jumpers
JP6 and JP7 should be fitted to the cor-
rect position to enable the RS485 port

instead of the second RS232 port.
As already stated, the RS485 interface
is Modbus pin-compatible. However,
Modbus uses pin 5 of the 9-way sub-D
connector as a signal line while for
RS232 pin 5 is connected to signal
ground. To overcome this problem,
jumper JP4 also needs to be fitted cor-
rectly to select either pin 5 as an RS485
signal or as RS232 signal ground.
Connector K4 provides the option of
linking a standard alphanumeric LCD
to the system board. The LCD interface
shares some the same LPC210x I/O
pins with the 8-way DIL switch. To use
the LCD, every switch position of the
DIL switch must be set to Off. A preset
P1 is used to adjust the LCD contrast.
The LCD R/W signal pin 5 of K4 is tied
to 0 V thus preventing a program to
read back any data from the LCD.
Therefore a program should use a sim-
ple delay to allow the LCD sufficient
time to process its last command. Dig-
ital I/O lines P0.22 and P0.23 control
the LCD RS and E signals respectively.
If the LCD module has an integrated
backlight it may be powered through
current limiting resistor R22.

An array of 16 LEDs (D1-D16) is pro-
vided on the board. The LEDs are con-
nected to the first 16 digital input / out-
put (I/O) lines of the LPC210x and can
be used to indicate status or monitor
peripheral activity such as activity on
the UARTs. LED D1 is connected to

214/2005 - elektor electronics

Over the years Elektor Electronics have
published a number of microcontroller
development boards and this article is
the latest in a long line of such articles.
What’s different about this article and
this design is that instead of being
based on an 8-bit device such as a PIC
[1], AVR [2] or 8051 [3] controller, this
design will use a 32-bit ARM microcon-
troller: the LPC210x from Philips Semi-
conductors. This device has just about
everything you could want from a micro-
controller, see the ‘ARMee & LPC210x
Main Features’ inset. However, we
should also mention that it lacks any
ADC interface and an external bus inter-
face. But then the LPC210x is a true
microcontroller and has no external bus
interface to extend the memory capabil-
ities using external Flash or SRAM
chips, or add new peripherals.

Hardware
The circuit diagram of the develop-
ment system is shown in Figure 1. The
motherboard may be powered from a
standard DC mains adapter capable of
supplying between 9 V and 15 V DC.
An adapter capable of supplying
around 500 mA will be more than suf-
ficient for powering the development
system board and any other reason-
able amount of hardware connected to
the development board.
On the processor daughterboard, volt-
age regulators provide the various volt-

Bored with PICs, AVRs and 8051s everyone else is doing? Last month

we covered 32-bit ARM microcontrollers and the undeniable star from

all the devices discussed in that article was the Philips LPC210x. This

month the real thing is upon us: enter ARMee, an incredibly powerful

ARM development board you can build and program yourself.

Development System

P0.00, LED D2 to P.01 and so on. It
should be noted that the LEDs also
share the LPC210x I/O pins with other
functions such as the UART0 and
UART1.
The LEDs are divided into two groups
of 8. The first group, D1-D8 are enabled
by jumper JP1 connecting them to 0 V
and the second group D8-D16 are
enabled by jumper JP2 again connect-
ing them to 0 V.
An 8-way DIL switch, S1, shares the
same LPC210x I/O pins as the LCD
interface connector and should only be
used if no LCD module is fitted to the
system. You may use this switch for
debugging purposes or use it as a con-
figuration switch.

On the motherboard a DIN41612 A+C
connector, K2, is available for the con-
nection of external circuitry to the
development system. This connector
carries the voltage supply rails +5 V
and +3.3 V, clock and reset signals and
all 32 I/O signals from the LPC210x.
The connector also carries signals for
separate I2C and SPI interfaces. It
should be noted that on the LPC210x
an I/O pin may provide more than one
function, in this case the I/O pin may
be shared with the UART, I2C, SPI or
other signals. It should also be noted
that the on board LEDs, 8-way DIL
switch and LCD connection also share
I/O signals on the DIN41612 connector.

Printed circuit
boards
The PCB artwork for the motherboard
and detachable processor board is
shown in Figure 2.
The processor daughterboard is avail-

able ready-built as item 040444-91
(with LPC2106 fitted), or bare as item
040444-1; see Readers Services pages
or go to our Online Shop.

The LPC210x is a 48-pin surface mount
device (SMD) and will need to be sol-
dered directly to the PCB. The bare

PCB 040444-1 comes pre-tinned. Posi-
tion IC1 carefully onto the SMD pads,
then using a fine tipped soldering iron,
solder each corner of the IC. If you are
happy with the IC’s position then con-
tinue and carefully solder the rest of
the IC pins. Solder carefully, but don’t
worry if excess solder connects the

elektor electronics - 4/200522

K1

+3V3

K2

+3V3

+5V

P0.17/TRST

P0.5/MISO

P0.6/MOSI

P0.7/SSEL

P0.8/TXD1

P0.9/RXD1

P0.18/TMS

P0.19/TCK

P0.20/TDI

P0.21/TDO

P0.0/TXD0

P0.1/RXD0

P0.3/SDA

P0.4/SCK

P0.2/SCL

LPC210x

VDD1.8 VDD3-2VDD3-1

P0.14

P0.22

P0.23

P0.24

P0.10

P0.11

P0.12

P0.25

P0.26

P0.13

P0.15

P0.16

P0.27

P0.28

P0.29

P0.30

P0.31

IC1

V
S

S
1

V
S

S
2

V
S

S
3

V
S

S
4

RTCK

DBG

RST

X1 X2

11 12

21 44

1740

19 31 43

22

23

24

26

27

28

29

30

32

33

34

35

36

37

38

39

41

45

46

47

48

13

10

14

15

18

NC

16

NC
20

NC
25

NC
42

5

7

1

2

3

6

8

9

4

C4

100n

C5

100n

+3V3

C1

100n

+1V8

X1

16MHz

C3

33p

C2

33p

LMS8117AMP-1.8
IC3

C7

10µ 16V

C8

10µ 16V

+1V8+5V

LMS8117AMP-3.3
IC2

C6

10µ 16V

+3V3+5V

040444 - 2 - 11a

P0.3/SDA

P0.4/SCK

P0.5/MISO

P0.6/MOSI

RTCK

DBG

P0.7/SSEL

P0.8/TXD1

P0.9/RXD1

P0.22

P0.23

P0.24

P0.10

P0.11

P0.12

P0.25

P0.26

P0.13

P0.14

P0.15

P0.16

P0.17/TRST

P0.18/TMS

P0.19/TCK

P0.20/TDI

P0.21/TDO

RST

P0.27

P0.28

P0.29

P0.0/TXD0

P0.1/RXD0

P0.30

P0.31

P0.2/SCL

Figure 1.Circuit diagram of the ARMee Development System. Note that the
processor module is detachable!

LPC210x (2104/2105/2106):

– 16/32-bit ARM7TDMI-S processor core

– 128 kB program Flash memory

– 16/32/64 kB SRAM data memory

– ISP and IAP

– digital I/O; 2 UARTs

– SPI and I2C interfaces

– timer capture and PWM outputs

– JTAG debugging interface

ARMee Development System:

– direct lineage with earlier Elektor Electronics development
systems

– detachable processor module available ready-stuffed with
LPC2106

– LEDs for viewing port status

– 8-way DIL switch for switch inputs

– connector for linking to a standard alphanumeric LCD mod-
ule

– real-world connectivity via two 9-way sub-D connectors:
2 x RS232 or 1 x RS232 and
1 x Modbus pin-compatible RS485

– DIN41612 I/O expansion connector on motherboard

– 160×100 mm Eurocard

– Free, multi-platform GNU GCC ‘C’ compilers

– Wide selection of free and commercial ARM development
software

ARMee & LPC210x Main Features

pins. Using some fresh desolder braid
apply to each solder bridge and heat
with a soldering iron for a moment,
allowing the braid to absorb the solder
from the bridge. Once the bridge is
removed carefully resolder with the
fine tipped soldering iron.
The bare motherboard PCB is available
ready-made from our Readers Services

and online Shop as item no. 040444-2.
When fitting components to the PCB,
do observe the polarities of the diodes,
the electrolytic capacitors and the
LEDs. IC1 and IC3 on the motherboard
can be fitted into sockets. With all
components are fitted do one last
visual inspection and compare the fruit
of your efforts with our working proto-

type shown in Figure 3 before apply-
ing power to the board.

Programming Tools
The LPC210x is easily programmed
using the C programming language. A
number of commercial C-Compilers are
available for the ARM architecture (see

4/2005 - elektor electronics 23

+3V3

K8

+3V3

+5V

P0.4/SCK

P0.5/MISO

P0.6/MOSI

RTCK

P0.7/SSEL

P0.8/TXD1

P0.9/RXD1

P0.22

P0.23

P0.24

P0.10

P0.11

P0.12

P0.25

P0.26

P0.13

P0.14

P0.15

P0.16

P0.17/TRST

P0.18/TMS

P0.19/TCK

P0.20/TDI

P0.21/TDO

RST

P0.27

P0.28

P0.29

P0.0/TXD0

P0.1/RXD0

P0.30

P0.31

P0.2/SCL

P0.3/SDA

K7

R20

1
0

k

DBG

K2

1 0

1 1

1 2

1 3

1 4

1 5

1 6

1 7

1 8

1 9

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 7

2 8

2 9

3 0

3 1

3 2

3 3

3 4

3 5

3 6

3 7

3 8

3 9

4 0

4 1

4 2

4 3

4 4

4 5

4 6

4 7

4 8

4 9

5 0

5 1

5 2

5 3

5 4

5 5

5 6

5 7

5 8

5 9

6 0

6 1

6 2

6 3

6 4

2

3

4

5

6

7

8

9

1

+5V +3V3

P0.16

P0.17/TRST

P0.18/TMS

P0.19/TCK

P0.20/TDI

P0.21/TDO

P0.22

P0.23

P0.24

P0.25

P0.26

P0.27

P0.28

P0.29

P0.30

P0.31

P0.14

P0.16

P0.7/SSEL

P0.5/MISO

P0.3/SDA

P0.0/TXD0

P0.1/RXD0

P0.2/SCL

P0.3/SDA

P0.4/SCK

P0.5/MISO

P0.6/MOSI

P0.7/SSEL

P0.8/TXD1

P0.9/RXD1

P0.10

P0.11

P0.12

P0.13

P0.14

P0.15

P0.13

P0.15

RST

P0.6/MOSI

P0.4/SCK

P0.2/SCL

+5V +3V3

R2
1k

D1

R3
1k

D2

R4
1k

D3

R5
1k

D4

R6
1k

D5

R7
1k

D6

R8
1k

D7

R9
1k

D8

JP1

R10
1k

D9

R11
1k

D10

R12
1k

D11

R13
1k

D12

R14
1k

D13

R15
1k

D14

R16
1k

D15

R17
1k

D16

JP2

8x 10k1

2 3 4 5 6 7 8 9

R1

S1

1 6 1 01 11 21 31 41 5

1 2 3 4 5 6 7 8

9

+3V3

K4

V
S

S

V
D

D

R
/W

V
O

R
S

D
0

D
1

D
2

10

D
3

11

D
4

12

D
5

13

D
6

14
D

7
15 161 2 3 4 5 6

E

7 8 9

A K

LCDisplay 2 x 16

10k

P1

+5V

1 2

3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

K1

+3V3

P0.22

P0.23

P0.24

P0.25

P0.26

P0.27

P0.28

P0.29

P0.30

P0.31

R22

3
3

Ω

+5V

P0.0/TXD0

P0.1/RXD0

P0.2/SCL

P0.3/SDA

P0.4/SCK

P0.5/MISO

P0.6/MOSI

P0.7/SSEL

P0.8/TXD1

P0.9/RXD1

P0.10

P0.11

P0.12

P0.13

P0.14

P0.15

P0.23

P0.24

P0.25

P0.26

P0.28

P0.29

P0.30

P0.31

P0.17/TRST

P0.20/TDI

P0.18/TMS

P0.19/TCK

RTCK

P0.21/TDO

RST

S2

RESET

R19

1
0

k

+3V3

K5

SUB D9

1

2

3

4

5

6

7

8

9

K6

SUB D9

1

2

3

4

5

6

7

8

9

MAX3082

IC3

RO

RE

DE

DI

5

8

2

1
R

D

3

4

7

6A

B

JP6

JP7

JP4

JP5

MAX3232

T1OUT

T2OUT

R1OUT

R2OUT

R1IN

IC1

T1IN

T2IN

R2IN

C1–

C1+

C2+

C2–

11

12

10

13

14

15

16V+

V-

7

89

3

1

4

5

2

6

C2

100n

C3

100n

C9

100n

C5

100n

C4

100n

+3V3

+3V3

R23

1
2

0
Ω

C1

100n

R24

R25

*

*

P0.0/TXD0

P0.1/RXD0

P0.9/RXD1

P0.8/TXD1

JP3

R18

1
0

k
+3V3

P0.14

SERIAL
BOOT
ENABLE

7805

IC2K3
D17

1N4007
C6

100µ 25V

C7

22µ 25V

C8

100n

R21

1k5

D18

+5V

see text*

040444 - 2 - 11b

R26

1
0

k

+3V3

R27

1
0

k

+3V3

P
0.

13

P
0.

10

web links). Those users who do not
want to purchase a commercial C-com-
piler can use the GNU C-Compiler.
This is an open-source C-compiler that
is considered by many as good as most
of the commercial offerings. The down-
side of using the GNU compiler is that
you don’t have the polished installation
process of a commercial compiler.
The LPC210x IC itself can be pro-

grammed using the on-board JTAG or
the internal Serial Boot Loader.

Go JTAG!
The JTAG interface can be used for
more than just programming the chip. It
can be used to debug a program during
execution on LPC210x. To use the JTAG
interface, a JTAG debugging interface

module is required to connect between
the LPC210x development system and
a host PC. There are several low cost
commercial JTAG interface modules
available, as well as several non-com-
mercial interpretations. These can be
found though a simple search on the
web, or by checking out the web links
provided at the end of this article.
If JTAG debugging is not required then

elektor electronics - 4/200524

040444-2

C1

C2

C3

C4

C5

C6C7

C8

C9

D1

D2

D3

D4

D5

D6

D7

D8

D9
D10

D11

D12

D13

D14

D15

D16
D

17

D
18

H5

IC
1

IC2

IC
3

JP1

JP2

JP3

JP
4

JP5

JP
6

JP7

K1

K2

K3

K4

K5

K6

K7 K8

P
1

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

R16

R17

R
18

R
19

R
20

R
21

R
22

R
23

R
24

R
25

R
26

R
27

S1

S2

040444-2

Figure 2a. PCB design for the Eurocard-size ARMee motherboard.

COMPONENTS
LIST
ARMee motherboard

Resistors:
R1 = 8-way 10kΩ SIL array
R2-R17 = 1kΩ
R18,R19,R20,R26,R27 = 10kΩ
R21 = 1kΩ5
R22 = 33Ω
R23 = 120Ω
R24,R25 = see text
P1 = 10kΩ preset

Capacitors:
C1-C5,C8,C9 = 100nF
C6 = 100µF 25V, radial
C7 = 10µF 25V, radial

Semiconductors:
D1-D16,D18 = LED, low current, 3mm
D17 = 1N4007
IC1 = MAX3232CPE
IC2 = 7805
IC3 = MAX3082CP

Miscellaneous:
JP1,JP2,JP3,JP5 = 2-way pinheader with

jumper

JP4,JP6,JP7 = 3-way pinheader with
jumper

K1 = 20-way boxheader
K2 = 2x32-way DIN41612AC connector
K3 = mains adapter connector, PCB

mount
K4 = general purpose LCD module, 2x16

characters
K5,K6 = 9-way sub-D socket (female),

angled, PCB mount
K7,K8 = 20-way SIL socket
S1 = 8-way DIP switch
S2 = pushbutton, PCB mount, e.g., DTS6
Heatsink, Fischer SK104 25,4 STC
PCB, order code 040444-2
Disk, project software (LEDTest), order

code 040444-11 or Free Download

the LPC210x can be programmed
using the built-in serial boot loader.
This allows the 5 digital I/O lines used
by the JTAG interface to be used for
something else.

Serial Boot Loader
To use the serial boot loader jumper JP3
needs to be fitted. JP3 pulls P0.14 to

ground and releasing the LPC210x from
reset forces the LPC210x to execute an
internal serial boot loader program from
the top 8 k of its Flash memory.

Using a free PC program provided by
Philips Semiconductor (Figure 4) and
a serial cable connected between a
host PC and UART0 of the LPC210x
(RS232 Port 1 on the ARMee board)

allows the programming of the
LPC210x to take place.

Using GNU GCC
with ARM Processors
“Why do we want to use the GNU GCC
compiler?” you may ask? Well for a
start the tools by virtue of their begin-
nings and the method of their commu-

4/2005 - elektor electronics 25

040444-2
(C) ELEKTOR

040444-2

elektor electronics - 4/200526

C6

C7

C8

IC1

K1K2

X1 040444

C
1

C
2

C
3

C4
C

5

IC2

IC3

(C) ELEKTOR
040444-1

Figure 2b. PCB design for the detachable LPC210x processor board.

COMPONENTS
LIST
LPC210x daughterboard

Capacitors:
C1,C4,C5 = 100nF, shape 0805
C2,C3 = 33pF, shape 0805
C6,C7,C8 = 10µF 16 V, radial

Semiconductors:
IC1 = LPC210x (2104/2105/2106)
IC2 = LMS8117AMP-3.3
IC3 = LMS8117AMP-1.8

Miscellaneous:
K1,K2 = 20-way SIL pinheader
X1 = 16MHz quartz crystal
PCB (bare), order code 040444-1
PCB (ready populated, with LPC2106),

order code 040444-91

Figure 3. Our finished and tested prototype of the ARMee Development Board. The processor module can be migrated to the
target application!

nal user support they are essentially
provided for free at the Free Software
Foundation (FSF) web site. These tools
are made available through the GNU
project under the GNU general public
license. Historically, the software from
GNU/FSF was aimed at the UNIX oper-
ating system and GNU is short for
‘GNU’s Not Unix’, while GCC is short
for ‘GNU Compiler Collection’.

GNU GCC can be found of dozens of
different host platforms from Linux,
Microsoft Windows, UNIX and Solaris
and many others. GNU GCC has been
targeted to produce executables for
many different microprocessor archi-
tectures ranging from Intel/AMD x86,

4/2005 - elektor electronics 27

Figure 4. Flash Downloader from Philips.

Figure 5. VIDE Programmer’s Editor.

Simple Input / Output Bus – SIOB
The Simple Input / Output Bus (SIOB) is about as simple as an expansion bus can be. 32 digital I/O signals are brought to a
DIN41612 board connector and made available as an expansion port. The digital I/O lines may be either inputs or outputs
dependant on the type of expansion interface required. The programmer of the development board is responsible for configur-
ing the data direction register of the microcontroller according to their digital I/O requirement.

In addition to the digital I/O signals the SIOB also offers serial expansion in the form of a SPI and I2C interface. A small num-
ber of SPI chip select signals are also present on the bus. The presence of the SPI and I2C interfaces will allow the development
system to be expanded in many ways. For example a system could be expanded with I2C based Analogue to Digital (ADC) and
Digital to Analogue (DAC) converters or SPI driven digital I/O.

The bus is completed by the +5 V and +3.3 V power signals, clock signal, RESET and RESET.

One final note on the SIOB, the signal pins of the LPC210x are not only used for digital I/O but have other functions such as
UART, I2C, SPI, PWM, Timer Capture, JTAG debugging etc. Where a signal pin is used to say drive a UART interface it will no
longer be available as a digital I/O signal and thus no longer be available for the SIOB. If a system requires the use of the
UART, JTAG debugging and LCD interfaces then there will be very few digital I/O signals available for the SIOB. In such cases
system expansion is best done through the I2C or SPI interfaces available on the SIOB.

Motorola 68x00, PowerPC, ARM7 and
ARM9. GNU GCC also covers several
microcontroller architectures, some of
these being TI’s MSP430, Atmel’s AVR
and Motorola’s 68HC11.
Another good reason is bugs, software
bugs. The GNU tool chain gets updated
regularly, meaning any reported prob-
lems are fixed relatively fast.
Your next question might be “What’s
the downside of using GNU GCC?”
Well, for a start it’s the staggering
range of hosts and targets available.
You have to check if GCC is available
for your host platform, next check if
your target processor is available and
finally decide if you want to build (i.e.,
compile) the GCC yourself or want a
pre-built binary. However, for the most
part you will find the most common
target architectures available for both
Win32 and Linux hosts as both source
code and binaries. But one word of
warning, don’t expect to find a fancy

installation program or an Integrated
Development Environment (IDE) —
this is ‘storm trooper’ DIY develop-
ment. If you want a fancy installer and
IDE check out one of the companies
that offer pre-configured, ready to go
versions of the GNU tools. GNU-X tools
from Microcross and GNUPro from Red-
hat are two examples of commercial
GNU tools.
If you wanted to build your own bina-
ries then download them from the

FSF/GNU web site and follow the
instructions provided on the site. How-
ever, we will take one of the many pre-
built binaries and use it to compile our
C code with.
For our example we will use the GNU
GCC version 3.4 Win32 pre-built bina-
ries from www.gnuarm.com. You can
select the Linux host if you wish. Other
pre-built binaries are available on the
web, Google a search with [GNU],
[ARM] and [binaries] and see how

many hits you get. So let’s download
the binaries from GNUARM and install
them on our PC.

GNU C Compiler
Go to the GNUARM sub-directory you
installed, look down the list of pro-
gram files and you will see a program
called arm-elf-gcc.exe. Similarly, if you
were using a microprocessor based on
the SH3 architecture you would expect
to find sh3-elfs-gcc.exe in the sub-
directory.
Now, arm-elf-gcc is a GNU GCC com-
piler targeted for the ARM architecture
using the Extended Linker Format (ELF)
object file format. If you were using the
Common Object File Format (COFF) you
would find arm-coff-gcc.exe. ELF and
COFF are two different formats of file
structure that the GCC can save the
compiler object output to.
Our first task is to make sure the GCC
compiler has been correctly installed.
A quick test is to display the version
message from the GCC compiler. Open
a Command Window or MS-DOS win-
dow and type the command arm-elf-
gcc –v. If you don’t see the GCC ver-
sion message, then you most likely
need to add the GCC directory to our
environment path.
To use the compiler, open a DOS win-
dow and type

arm-elf-gcc -c ledtst.c

The actual program is found in the
‘LEDTest – an example’ inset. An
archive file containing the assembly
code, linker and compiler result files is
available as a free download with this
article (040444-11).
The GCC compiler has a raft of options
we can invoke, too many to list in this
article! Some of the main command
line options are:
–c for compile only and do

not link the object file;
-Wall to enable every warning

and error conditions the
compiler will produce;

-o filename to change the file name of
the object file produced;

–S to produce an assembly
listing interspaced with
the original C code;

–g to include debugging
information.

The command

arm-elf-gcc -Wall ledtst.c –o ledtst

will faithfully compile ledtst.c with all
compiler warnings enabled and pro-

elektor electronics - 4/200528

More ARM binutils.
addr2line Converts addresses into filenames and line numbers.

ar Archiving utility (creating, modifying and extracting from archives)

gprof Displays profiling information.

nlmconv Converts object code into an NLM.

nm Lists symbols from object files.

ranlib Generates an index to the contents of an archive.

readelf Displays information from any ELF format object file.

size Lists the section sizes of an object or archive file.

strings Lists printable strings from files.

strip Discards symbols.

Commercial offerings
If you are happy to provide a few personal details to Keil you can freely down-
load their uVision IDE and a pre-built copy of GNU tools. These tools are unre-
stricted for generating code with the only limitation (at this time) is that the debug-
ger is limited to 16 k program size. The Keil tools are based around their uVision
3 IDE, the screendump shows the IDE configured for GNU GCC.

Redhat and Microcross provide pre-built GNU tool chains for your chosen target
and host platform. Rowley Associates also provide a commercial development
environment based on the GNU tool chain but using their own libraries and IDE.

Configuring Keil uVision IDE for GNU GCC.

duce an object file called ledtst.o.
When we invoke GCC compiler, it nor-
mally does the preprocessing, compi-
lation, assembly and linking. However
we can tell the compiler not to link any
of the object files by using -c option.
Where this is done we can use the
GNU linker to combine our object files
into a single output file.

GNU Linker
The object files produced during the
compilation stage are by themselves
incomplete. We still need to resolve
internal variables and function refer-
ences for the object files and this is
where the linker comes in. The linker’s
job is to combine the object files and
resolve any unresolved symbols and
function references.
The command line GNU linker ld (or
arm-elf-ld) takes the names of the
object files to be linked together as
arguments, as well as any options and
outputs a single relocatable object file.
If we had several files to compile and
link we might type:

arm-elf-gcc -c module1.c
arm-elf-gcc -c module2.c
arm-elf-gcc -c module3.c

arm-elf-ld module1.o module2.o mod-
ule3.o -o prog1

There are no memory addresses
assigned to the code and data sections
in the relocatable object file. To do this
we need a locator program that will
assign physical memory addresses to
each code and data sections. The GNU
linker has a built-in locator function
that can locate the code and data sec-
tions of the program to specific areas
of memory, which results in an
absolutely located binary image.
We can now download this binary
image to our development system.
The GNU linker includes a scripting
language that can be used to control
the linking process and the exact order
of the code and data sections within
the relocatable program. We can also
assign memory address to the code
and data sections. We call a script file
by using the command line option –T
followed by the name of the script file,
for example:

arm-elf-ld -Tlpc2106-rom.ld

GNU Make
The make file is used to mechanise the
compilation process. In essence, the
make utility follows a user defined set
of rules and these rules are processed

in sequence. For instance, instead of
typing the four command lines for the
linker example shown previously we
would type and save these commands
into separate text file makefile or
another suitable filename. To compile
this example we would type:

make makefile

The Make utility will determine what
source code files have changed since
the last time is was run and will only
compile those changed files. You may
also include conditional compilation
choices by making use of makes’ pre-
processor functions.

Debugging
The GNU GCC tool chain also comes
with a command line debugging tool
called GDB.
GNU GDB is one of those tools whose
operation and large number of options
could fill an entire book, let alone a sin-
gle article. We do not intend to use
GDB with the ARMee Development
Board, instead you will be using the
Flash downloader provided Philips
(Figure 4). Therefore, for this article we
skim over most of GDB functionality
but those readers wanting more infor-
mation on GNU GDB are referred to the
web where lurks Bill Gatliff’s excellent
introduction.
In essence GDB is a source debugger.
It is connected to a target board
through a serial connection where it
communicates and interacts with a
monitor type program on the target
board. To launch GDB type:

arm-elf-gdb ledtst
Once GDB is running you will be work-
ing within the GDB console where the
debugging commands will be typed.
Next, you can load your program to the
target board by using the command

(gdb) load

Once loaded, you can step through
your source code, set break points,
investigate what functions were called
to get to the current source line or use
one of the other debugging options
GDB offers.

Other tools
The GNU tool chain also includes a
number of other tools, the binutils,
which we can us during our develop-
ment. Two of the most useful tools are
objcopy and objdump.
The objcopy (or arm-elf-objcopy) utility
is used to translate object files from
one format to another format. For
example, we can translate a file from
binary image into s-record format.

arm-elf-objcopy -O srec ledtst.o
ledtst.s19

while the objdump (or arm-elf-obj-
dump) utility can be used to disassem-
bly the object files. With the disassem-
bled file you can see where the linker
has located the various text, data and
bss sections of our object file.

arm-elf-objdump. —disassemble
ledtst.o

You may also add source code to the

4/2005 - elektor electronics 29

Start-up file
To use our compiled C program we first need to initialise the processors stack
pointers and memory settings. A separate object file called the start up file usually
does this. Typically a start up file will be called startup.s, boot.s or crt0.s. The start
up file is linked to the rest of the compiled object files during the program linking
stage. Check the example files from the LPC2000 group on Yahoo for crt0.s or
boot.s, which are typical examples of ARM start up files.

The start up code must provide the following:

1. Disable all interrupts.

2. Copy initialised variables from ROM to RAM.

3. Zero uninitialised data variables.

4. Allocate space for and initialise stack area.

5. Initialise the stack.

6. Create and initialise the heap area.

7. Enable interrupts.

8. Jump to main ().

disassembled output by adding the
option –S to the command line. If you
want to view the symbol table of our
object file, simply include the —syms
option to the command line.
Some of the GNU other binutils are
listed in Table 1.

IDE
When installed, GNU doesn’t provide
us with any form of integrated devel-
opment environment (IDE). To resolve
this we could install VIDE (Figure 5),
one of the more popular IDEs that can
be used with the GNU tool chain.
VIDE provides us with a programmers
text editor and a GUI for running the
GNU tools. Other IDEs, both free and
commercial, are available for us to use
with our GNU tools. Do a search of the
web to see what’s out there, or use the
Forum on our website to get in touch
with fellow ARM twisters.

(040444-2)

References:
1. PICee Development System, Elektor

Electronics February 2003.
2. AVRee Development System, Elektor

Electronics March 2003.
3. 89S8252 Flash Microcontroller

Board, Elektor Electronics December
2001.

For further reading
1. Programming Embedded Systems in C

and C++, Michael Ball; O’Reilly
(www.oreilly.com)

2. An Introduction to GCC, Brian J.
Gough, foreword by Richard M.
Stallman; pdf copy at
http://www.network-
theory.co.uk/gcc/intro/

Websites:
www.geocities.com/tonydixon2k1/index.

html (ARMee support website)
www.gnu.org (Main GNU web site)
www.fsf.org (Free Software Foundation

web site)
www.gnuarm.com (GNU Binaries for

ARM processors)
http://groups.yahoo.com/group/lpc200

0/ (Philips LPC2000 ARM Discussion
Group)

http://groups.yahoo.com/group/gnuarm
/ (GNUARM Discussion Group)

www.objectcentral.com/vide.htm (VIDE
Windows IDE)

www.billgatliff.com (Excellent GNU
tutorials by Bill Gatliff)

http://www.dreamislife.com/arm/
(LPC2106 tutorials by Senz)

www.keil.com (GNU GCC and
Commercial C-Compilers)

www.rowley.co.uk (GNU GCC and
Commercial C-Compilers)

www.redhat.co.uk (Commercial GNU
GCC tool chains)

www.microcross.co.uk (Commercial GNU

elektor electronics - 4/200530

LEDTest – an example using the ARMee board
In the embedded development community the first program you usually write with
a new compiler or target platform is a LED-flashing program. This is as ubiquitous
as the “hello world” program is for PC development and we will be no different.
Our example program will consist of a C program that will flash one the LEDs on
the ARMee development board. See Listing 1!
Include the Philips ARM LPC2100 C header file, ARM start up file (boot.o) and
GCC linker script (lpc2106-rom.ld) in the same directory as our LED test program.
From the command line prompt, type the following GCC commands:

arm-elf-gcc -c ledtst.c
arm-elf-ld -Tlpc2106-rom.ld -nostartfiles, -nostdlib -s -o led boot.o ledtst.o
arm-elf-objcopy —output-target ihex test test.hex

We should now have a compiled and linked hex file ready for sending to the
ARMee Development board. To save retyping the GCC commands, we could type
the above GCC commands into a text editor and save them as a batch file
ledtst.bat or create a Makefile.

Finally, instead of using the GDB debugging tool included with GNU GCC we will
op to use the simple Flash download provided by Philips Semiconductor, Figure 4.
Select the filename of our LED hex file and upload to the target board.

Once uploaded, press reset on the ARMee board and LED D1 should start to flash.

Congratulations! You’ve have successfully compiled, linked and uploaded our test
program using the GNU GCC compiler and tools.

#include “LPC2000.h”

void Delay (unsigned long a)
{

while (—a!=0);
}

int main (void) {

/* System Init */
/* Init PLL */
SCB_PLLCFG = 0x23;
SCB_PLLFEED = 0xAA; SCB_PLLFEED = 0x55;

SCB_PLLCON = 0x01; /* Enable PLL */
SCB_PLLFEED = 0xAA; SCB_PLLFEED = 0x55;

while (!(SCB_PLLSTAT & PLOCK)); /* Wait for PLL to lock */

SCB_PLLCON = 0x03; /* Connect PLL as clock source */
SCB_PLLFEED = 0xAA; SCB_PLLFEED = 0x55;

/* Init MAM & Flash memory fetch */
MAM_MAMCR=0x2; /* MAM = flash */
MAM_MAMTIM=0x4;
SCB_VPBDIV=0x1; /* PCLK = CCLK */

/* Init GPIO */
GPIO_IODIR = 0x000000001; /* P0.0 as output */
GPIO_IOSET |= 0x00000001; /* LED off */

/* main loop */
while (1) {

GPIO_IOSET |= 0x00000001; /* LED off */
Delay (1000000);

GPIO_IOCLR |= 0x00000001; /* LED on */
Delay (2000000);

}

} /* End of main () */

HandsOn Technology is a manufacturer of high
quality educational and professional electronics
kits and modules, uController
development/evaluation boards. Inside you will
find Electronic Kits and fully assembled and
tested Modules for all skill levels. Please check
back with us regularly as we will be adding many
new kits and products to the site in the near
future.
Do you want to stay up to date with electronics
and computer technology? Always looking for
useful hints, tips and interesting offers?

http://www.handsontec.com

Inspiration and goals...
HandsOn Technology provides a multimedia and
interactive platform for everyone interested in
electronics. From beginner to diehard, from student to
lecturer... Information, education, inspiration and
entertainment. Analog and digital; practical and
theoretical; software and hardware...
HandsOn Technology provides Designs, ideas and
solutions for today's engineers and electronics
hobbyists.

Creativity for tomorrow's better living...
HandsOn Technology believes everyone should have the tools, hardware, and resources to play
with cool electronic gadgetry. HandsOn Technology's goal is to get our "hands On" current
technology and information and pass it on to you! We set out to make finding the parts and
information you need easier, more intuitive, and affordable so you can create your awesome
projects. By getting technology in your hands, we think everyone is better off
We here at HandsOn like to think that we exist in the same group as our customers >> curious
students, engineers, prototypers, and hobbyists who love to create and share. We are
snowboarders and rock-climbers, painters and musicians, engineers and writers - but we all have
one thing in common...we love electronics! We want to use electronics to make art projects,
gadgets, and robots. We live, eat, and breathe this stuff!!
If you have more questions, go ahead and poke around the website, or send an email to
sales@handsontec.com. And as always, feel free to let your geek shine - around here, we
encourage it...

