INTEGRATED CIRCUITS

DATA SHEET

NE/SA556Dual timer

Product data Replaces NE/SA/SE556/NE556-1 of 1994 Aug 31 IC11 2001 Aug 03

Dual timer NE/SA556

DESCRIPTION

Both the NE556 and SA556 Dual Monolithic timing circuits are highly stable controllers capable of producing accurate time delays or oscillation. The 556 is a dual 555. Timing is provided by an external resistor and capacitor for each timing function. The two timers operate independently of each other, sharing only $V_{\rm CC}$ and ground. The circuits may be triggered and reset on falling waveforms. The output structures may sink or source 200 mA.

FEATURES

- Timing from microseconds to hours
- Replaces two 555 timers
- Operates in both astable and monostable modes
- High output current
- Adjustable duty cycle
- TTL compatible
- Temperature stability of 0.005%/°C

APPLICATIONS

- Precision timing
- Sequential timing
- Pulse shaping
- Pulse generator
- Missing pulse detector
- Tone burst generator
- Pulse width modulation
- Time delay generator
- Frequency division
- Touch-Tone® encoder
- Industrial controls
- Pulse position modulation
- Appliance timing
- Traffic light control

PIN CONFIGURATION

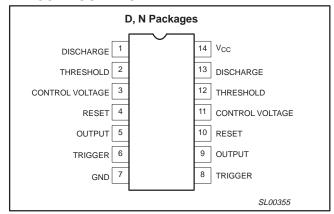


Figure 1. Pin Configuration

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #
14-Pin Plastic Small Outline (SO) Package	0 to +70°C	NE556D	SOT108-1
14-Pin Plastic Dual In-Line Package (DIP)	0 to +70°C	NE556N	SOT27-1
14-Pin Plastic Dual In-Line Package (DIP)	-40°C to +85°C	SA556N	SOT27-1

[®] Touch-Tone is a registered trademark of AT&T.

Dual timer NE/SA556

BLOCK DIAGRAM

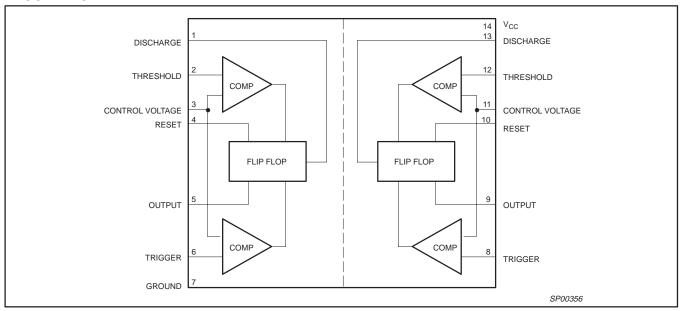


Figure 2. Block Diagram

EQUIVALENT SCHEMATIC (Shown for one circuit only)

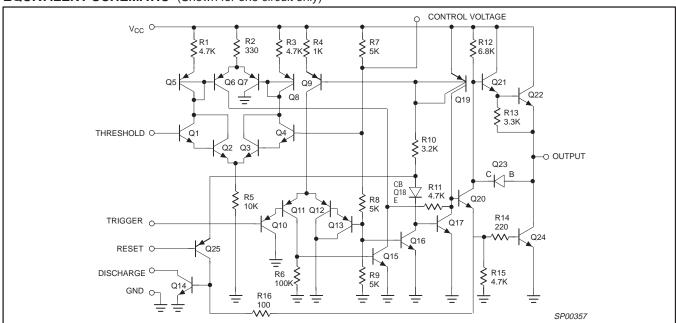


Figure 3. Equivalent Schematic

Dual timer NE/SA556

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+16	V
P _D	Maximum allowable power dissipation ¹	800	mW
T _{amb}	Operating temperature range NE556 SA556	0 to +70 -40 to +85	°C °C
T _{stg}	Storage temperature range	-65 to +150	°C
T _{SOLD}	Lead soldering temperature (10 sec max)	+230	°C

NOTE:

2001 Aug 03

^{1.} The junction temperature must be kept below 125 °C for the D package and below 150 °C for the N package. At ambient temperatures above 25 °C, where this limit would be exceeded, the Maximum Allowable Power Dissipation must be derated by the following:

D package 115 °C/W

N package 80 °C/W

Dual timer NE/SA556

ELECTRICAL CHARACTERISTICS

 T_{amb} = 25 °C, V_{CC} = +5 V to +15 V, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT
V _{CC}	Supply voltage		4.5		16	V
Icc	Supply current (low state) ¹	$V_{CC} = 5 \text{ V}, R_L = \infty$ $V_{CC} = 15 \text{ V}, R_L = \infty$		6 20	12 30	mA mA
t _M Δt _M /ΔT Δt _M /ΔV _S	Timing error (monostable) Initial accuracy ² Drift with temperature Drift with supply voltage	R_A = 2k Ω to 100 k Ω C = 0.1 μF T = 1.1 RC		0.75 50 0.1	3.0 150 0.5	% ppm/°C %/V
t _A Δt _A /ΔΤ Δt _A /ΔV _S	Timing error (astable) Initial accuracy ² Drift with temperature Drift with supply voltage	R_A , $R_B = 1 k\Omega to 100 k\Omega$ $C = 0. \mu F$ $V_{CC} = 15 V$		5 400 0.3	13 500 1	% ppm/°C %/V
V _C	Control voltage level	V _{CC} = 15 V V _{CC} = 5 V	9.0 2.6	10.0 3.33	11.0 4.0	V
V _{TH}	Threshold voltage	V _{CC} = 15 V V _{CC} = 5 V	8.8 2.4	10.0 3.33	11.2 4.2	V V
I _{TH}	Threshold current ³	V _{CC} = 15 V, V _{TH} = 10.5 V		30	250	nA
V _{TRIG}	Trigger voltage	V _{CC} = 15 V V _{CC} = 5 V	4.5 1.1	5.0 1.67	5.6 2.2	V
I _{TRIG}	Trigger current	V _{TRIG} = 0 V		0.5	2.0	μΑ
V _{RESET}	Reset voltage ⁵		0.4	0.7	1.0	V
	Reset current	V _{RESET} = 0.4 V	0.4	0.1	0.6	mA
I _{RESET}	Reset current	V _{RESET} = 0 V		0.4	1.5	mA
V _{OL}	Output voltage (low)	$V_{CC} = 15 \text{ V}$ $I_{SINK} = 10 \text{ mA}$ $I_{SINK} = 50 \text{ mA}$ $I_{SINK} = 100 \text{ mA}$ $I_{SINK} = 200 \text{ mA}$		0.1 0.4 2.0 2.5	0.25 0.75 3.2	V
		$V_{CC} = 5 \text{ V}$ $I_{SINK} = 8 \text{ mA}$ $I_{SINK} = 5 \text{ mA}$		0.25 0.15	0.3 0.25	V
V _{ОН}	Output voltage (high)	$V_{CC} = 15 \text{ V}$ $I_{SOURCE} = 200 \text{ mA}$ $I_{SOURCE} = 100 \text{ mA}$ $V_{CC} = 5 \text{ V}$	12.75	12.5 13.3		V
to	Rise time of output	I _{SOURCE} = 100 mA	2.75	3.3 100	300	ns
t _R	Fall time of output	+		100	300	ns
t _F	Discharge leakage current	+		20	100	nA
	Matching characteristics ⁴ Initial accuracy ² Drift with temperature			1.0 ±10	2.0	% ppm/°C
	Drift with supply voltage			0.2	0.5	%/

NOTES:

- 1. Supply current when output is high is typically 1.0 mA less.
- 2. Tested at $V_{CC} = 5 \text{ V}$ and $V_{CC} = 15 \text{ V}$.
- 3. This will determine maximum value of $R_A + R_B$. For 15 V operation, the max total R = 10 M Ω , and for 5 V operation, the maximum total R = 3.4 M Ω .
- 4. Matching characteristics refer to the difference between performance characteristics for each timer section in the monostable mode.
- 5. Specified with trigger input high. In order to guarantee reset the voltage at reset pin must be less than or equal to 0.4 V. To disable reset function, the voltage at reset pin has to be greater than 1 V.
- 6. Time measured from a positive-going input pulse from 0 to 0.4 V_{CC} into the threshold to the drop from high to low of the output. Trigger is tied to threshold.

Dual timer NE/SA556

TYPICAL APPLICATIONS

One feature of the dual timer is that by utilizing both halves it is possible to obtain sequential timing. By connecting the output of the first half to the input of the second half via a 0.001 μF coupling capacitor sequential timing may be obtained. Delay t_1 is determined by the first half and t_2 by the second half delay.

The first half of the timer is started by momentarily connecting Pin 6 to ground. When it is timed out (determined by $1.1R_1C_1$) the second half begins. Its duration is determined by $1.1R_2C_2$.

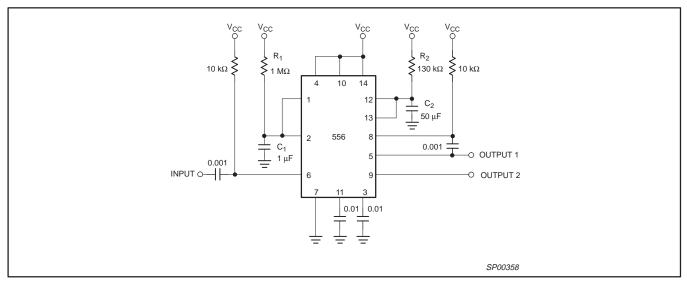


Figure 4. Sequential Timer

Dual timer NE/SA556

TYPICAL PERFORMANCE CHARACTERISTICS

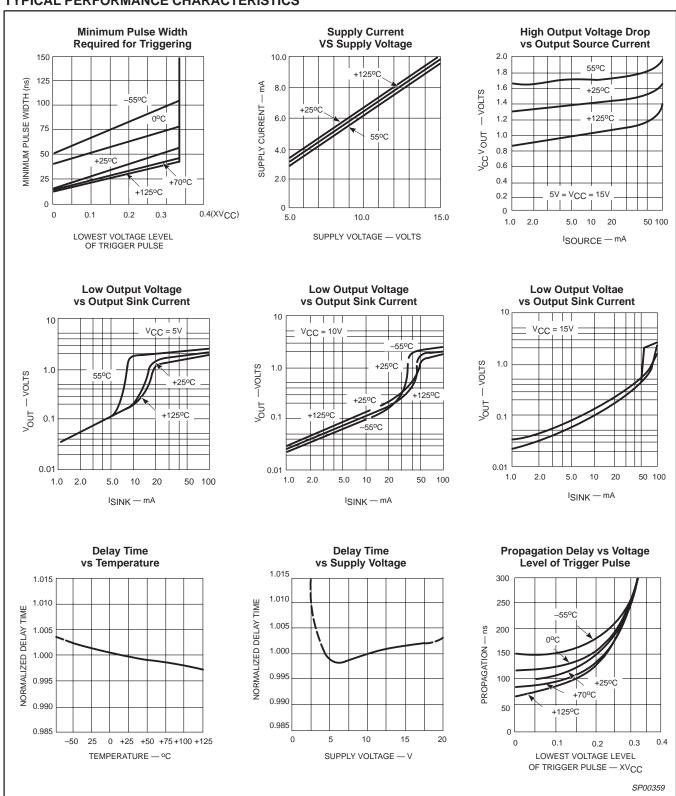
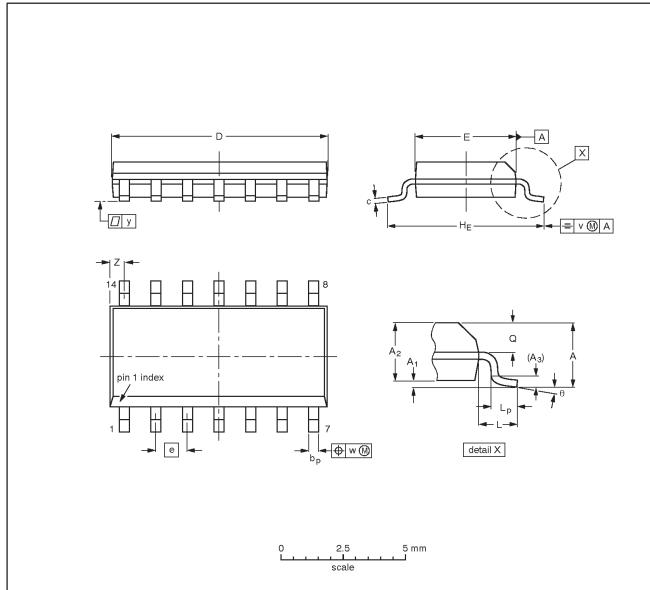



Figure 5. Typical Performance Characteristics

Dual timer NE/SA556

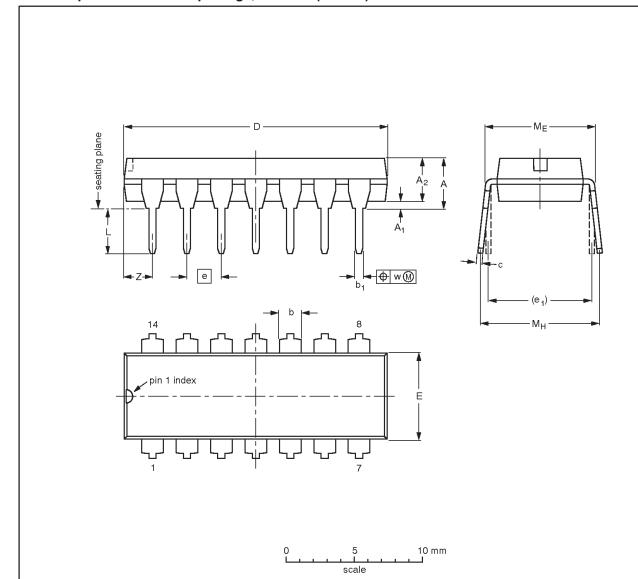
SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	>	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	8.75 8.55	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01	0.019 0.014	0.0100 0.0075	0.35 0.34	0.16 0.15	0.050	0.244 0.228	0.041	0.039 0.016		0.01	0.01	0.004	0.028 0.012	0°

Note


1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT108-1	076E06	MS-012				-97-05-22 99-12-27

Dual timer NE/SA556

DIP14: plastic dual in-line package; 14 leads (300 mil)

SOT27-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E (1)	e	e ₁	L	ME	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.020	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION		REFEF	EUROPEAN	ISSUE DATE		
	IEC	JEDEC	EIAJ		PROJECTION	1330E DATE
SOT27-1	050G04	MO-001	SC-501-14			95-03-11 99-12-27

2001 Aug 03

HandsOn Technology

http://www.handsontec.com

creativity for tomorrow's better living...

HandsOn Tech provides a multimedia and interactive platform for everyone interested in electronics. From beginner to diehard, from student to lecturer... Information, education, inspiration and entertainment. Analog and digital; practical and theoretical; software and hardware...

HandsOn Technology support Open Source Hardware(OSHW) Development Platform.

Learn: Design: Share

www.handsontec.com

